Variante - Observation
Beschreibung
Dieses Profil ermöglicht eine vollständige Beschreibung der gefundenen Variante unter Verwendung von Eigenschaften aus einer Vielzahl von Testmethoden.
Als Nomenklatur für Observation.component:cytogenetic-location.valueCodeableConcept kann das CodeSystem Cytogenetic (chromosome) location (NCBI/NLM) verwendet werden für das bislang keine Canonical URl existiert, aber eine OID
urn:oid:2.16.840.1.113883.6.335
aus HL7 Version 2.5.1 Implementation Guide: Laboratory Results Interface.Die Beschreibung komplexer Varianten, z.B. die Abbildung von 'Compound Heterozygous', erfolgt über zwei Variant Instanzen, wie hier beschrieben
Name | Canonical |
---|---|
MII_PR_MolGen_Variante | https://www.medizininformatik-initiative.de/fhir/ext/modul-molgen/StructureDefinition/variante |
Das Profil ist abgeleitet vom Profil Variant aus HL7 Genomics Reporting Implementation Guide.
Diff
Observation | I | Observation | There are no (further) constraints on this element Element IdObservation Variant Alternate namesVital Signs, Measurement, Results, Tests DefinitionMeasurements and simple assertions made about a patient, device or other subject. Used for simple observations such as device measurements, laboratory atomic results, vital signs, height, weight, smoking status, comments, etc. Other resources are used to provide context for observations such as laboratory reports, etc.
| |
extension | I | 0..* | Extension | There are no (further) constraints on this element Element IdObservation.extension Additional content defined by implementations Alternate namesextensions, user content DefinitionMay be used to represent additional information that is not part of the basic definition of the resource. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone. Unordered, Open, by url(Value) Constraints
|
secondary-finding | I | 0..1 | Extension(CodeableConcept) | There are no (further) constraints on this element Element IdObservation.extension:secondary-finding Secondary findings are genetic test results that provide information about variants in a gene unrelated to the primary purpose for the testing, most often discovered when [Whole Exome Sequencing (WES)](https://en.wikipedia.org/wiki/Exome_sequencing) or [Whole Genome Sequencing (WGS)](https://en.wikipedia.org/wiki/Whole_genome_sequencing) is performed. This extension should be used to denote when a genetic finding is being shared as a secondary finding, and ideally refer to a corresponding guideline or policy statement. For more detail, please see: https://ghr.nlm.nih.gov/primer/testing/secondaryfindings Alternate namesextensions, user content DefinitionSecondary findings are genetic test results that provide information about variants in a gene unrelated to the primary purpose for the testing, most often discovered when Whole Exome Sequencing (WES) or Whole Genome Sequencing (WGS) is performed. This extension should be used to denote when a genetic finding is being shared as a secondary finding, and ideally refer to a corresponding guideline or policy statement. For more detail, please see: https://ghr.nlm.nih.gov/primer/testing/secondaryfindings. There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone. http://hl7.org/fhir/StructureDefinition/observation-secondaryFinding Constraints
|
body-structure | I | 0..1 | Extension(Reference(BodyStructure)) | There are no (further) constraints on this element Element IdObservation.extension:body-structure Target anatomic location or structure Alternate namesextensions, user content DefinitionRecord details about the anatomical location of a specimen or body part. This resource may be used when a coded concept does not provide the necessary detail needed for the use case. There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone. Extension(Reference(BodyStructure)) Extension URLhttp://hl7.org/fhir/StructureDefinition/bodySite Constraints
|
identifier | Σ | 0..* | Identifier | There are no (further) constraints on this element Element IdObservation.identifier Business Identifier for observation DefinitionA unique identifier assigned to this observation. Allows observations to be distinguished and referenced.
|
basedOn | Σ I | 0..* | Reference(CarePlan | DeviceRequest | ImmunizationRecommendation | MedicationRequest | NutritionOrder | ServiceRequest) | There are no (further) constraints on this element Element IdObservation.basedOn Fulfills plan, proposal or order Alternate namesFulfills DefinitionA plan, proposal or order that is fulfilled in whole or in part by this event. For example, a MedicationRequest may require a patient to have laboratory test performed before it is dispensed. Allows tracing of authorization for the event and tracking whether proposals/recommendations were acted upon. References SHALL be a reference to an actual FHIR resource, and SHALL be resolveable (allowing for access control, temporary unavailability, etc.). Resolution can be either by retrieval from the URL, or, where applicable by resource type, by treating an absolute reference as a canonical URL and looking it up in a local registry/repository. Reference(CarePlan | DeviceRequest | ImmunizationRecommendation | MedicationRequest | NutritionOrder | ServiceRequest) Constraints
|
partOf | Σ I | 0..* | Reference(MedicationAdministration | MedicationDispense | MedicationStatement | Procedure | Immunization | ImagingStudy) | There are no (further) constraints on this element Element IdObservation.partOf Part of referenced event Alternate namesContainer DefinitionA larger event of which this particular Observation is a component or step. For example, an observation as part of a procedure. To link an Observation to an Encounter use Reference(MedicationAdministration | MedicationDispense | MedicationStatement | Procedure | Immunization | ImagingStudy) Constraints
|
status | S Σ ?! | 1..1 | codeBinding | There are no (further) constraints on this element Element IdObservation.status registered | preliminary | final | amended + DefinitionThe status of the result value. Need to track the status of individual results. Some results are finalized before the whole report is finalized. This element is labeled as a modifier because the status contains codes that mark the resource as not currently valid. Codes providing the status of an observation. ObservationStatus (required)Constraints
|
category | S | 1..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.category Classification of type of observation DefinitionA code that classifies the general type of observation being made. Used for filtering what observations are retrieved and displayed. In addition to the required category valueset, this element allows various categorization schemes based on the owner’s definition of the category and effectively multiple categories can be used at once. The level of granularity is defined by the category concepts in the value set. Unordered, Open, by coding(Value) BindingCodes for high level observation categories. ObservationCategoryCodes (preferred)Constraints
|
labCategory | 1..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.category:labCategory Classification of type of observation DefinitionA code that classifies the general type of observation being made. Used for filtering what observations are retrieved and displayed. In addition to the required category valueset, this element allows various categorization schemes based on the owner’s definition of the category and effectively multiple categories can be used at once. The level of granularity is defined by the category concepts in the value set. Codes for high level observation categories. ObservationCategoryCodes (preferred)Constraints
| |
coding | Σ | 1..* | CodingPattern | There are no (further) constraints on this element Element IdObservation.category:labCategory.coding Code defined by a terminology system DefinitionA reference to a code defined by a terminology system. Allows for alternative encodings within a code system, and translations to other code systems. Codes may be defined very casually in enumerations, or code lists, up to very formal definitions such as SNOMED CT - see the HL7 v3 Core Principles for more information. Ordering of codings is undefined and SHALL NOT be used to infer meaning. Generally, at most only one of the coding values will be labeled as UserSelected = true.
{ "system": "http://terminology.hl7.org/CodeSystem/observation-category", "code": "laboratory" }
|
text | Σ | 0..1 | string | There are no (further) constraints on this element Element IdObservation.category:labCategory.text Plain text representation of the concept DefinitionA human language representation of the concept as seen/selected/uttered by the user who entered the data and/or which represents the intended meaning of the user. The codes from the terminologies do not always capture the correct meaning with all the nuances of the human using them, or sometimes there is no appropriate code at all. In these cases, the text is used to capture the full meaning of the source. Very often the text is the same as a displayName of one of the codings.
|
code | S Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.code 69548-6 Alternate namesName DefinitionDescribes what was observed. Sometimes this is called the observation "name". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and, if present, component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "69548-6" } ] }
|
subject | S Σ I | 1..1 | MII-Reference(Patient | Group) | Element IdObservation.subject A reference from one resource to another DefinitionA reference from one resource to another. Observations have no value if you don't know who or what they're about. References SHALL be a reference to an actual FHIR resource, and SHALL be resolveable (allowing for access control, temporary unavailability, etc.). Resolution can be either by retrieval from the URL, or, where applicable by resource type, by treating an absolute reference as a canonical URL and looking it up in a local registry/repository. MII-Reference(Patient | Group) Constraints
|
focus | Σ I | 0..* | Reference(Resource) | There are no (further) constraints on this element Element IdObservation.focus What the observation is about, when it is not about the subject of record DefinitionThe actual focus of an observation when it is not the patient of record representing something or someone associated with the patient such as a spouse, parent, fetus, or donor. For example, fetus observations in a mother's record. The focus of an observation could also be an existing condition, an intervention, the subject's diet, another observation of the subject, or a body structure such as tumor or implanted device. An example use case would be using the Observation resource to capture whether the mother is trained to change her child's tracheostomy tube. In this example, the child is the patient of record and the mother is the focus. Typically, an observation is made about the subject - a patient, or group of patients, location, or device - and the distinction between the subject and what is directly measured for an observation is specified in the observation code itself ( e.g., "Blood Glucose") and does not need to be represented separately using this element. Use
|
encounter | Σ I | 0..1 | Reference(Encounter) | There are no (further) constraints on this element Element IdObservation.encounter Healthcare event during which this observation is made Alternate namesContext DefinitionThe healthcare event (e.g. a patient and healthcare provider interaction) during which this observation is made. For some observations it may be important to know the link between an observation and a particular encounter. This will typically be the encounter the event occurred within, but some events may be initiated prior to or after the official completion of an encounter but still be tied to the context of the encounter (e.g. pre-admission laboratory tests).
|
effective[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.effective[x] Clinically relevant time/time-period for observation Alternate namesOccurrence DefinitionThe time or time-period the observed value is asserted as being true. For biological subjects - e.g. human patients - this is usually called the "physiologically relevant time". This is usually either the time of the procedure or of specimen collection, but very often the source of the date/time is not known, only the date/time itself. Knowing when an observation was deemed true is important to its relevance as well as determining trends. At least a date should be present unless this observation is a historical report. For recording imprecise or "fuzzy" times (For example, a blood glucose measurement taken "after breakfast") use the Timing datatype which allow the measurement to be tied to regular life events.
| |
effectiveDateTime | dateTime | There are no (further) constraints on this element Data Type | ||
effectivePeriod | Period | There are no (further) constraints on this element Data Type | ||
effectiveTiming | Timing | There are no (further) constraints on this element Data Type | ||
effectiveInstant | instant | There are no (further) constraints on this element Data Type | ||
issued | Σ | 0..1 | instant | There are no (further) constraints on this element Element IdObservation.issued Date/Time this version was made available DefinitionThe date and time this version of the observation was made available to providers, typically after the results have been reviewed and verified. For Observations that don’t require review and verification, it may be the same as the
|
performer | Σ I | 0..* | Reference(Practitioner | PractitionerRole | Organization | CareTeam | Patient | RelatedPerson) | There are no (further) constraints on this element Element IdObservation.performer Who is responsible for the observation DefinitionWho was responsible for asserting the observed value as "true". May give a degree of confidence in the observation and also indicates where follow-up questions should be directed. References SHALL be a reference to an actual FHIR resource, and SHALL be resolveable (allowing for access control, temporary unavailability, etc.). Resolution can be either by retrieval from the URL, or, where applicable by resource type, by treating an absolute reference as a canonical URL and looking it up in a local registry/repository. Reference(Practitioner | PractitionerRole | Organization | CareTeam | Patient | RelatedPerson) Constraints
|
value[x] | S Σ I | 0..1 | There are no (further) constraints on this element Element IdObservation.value[x] Actual result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. An observation may have; 1) a single value here, 2) both a value and a set of related or component values, or 3) only a set of related or component values. If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Unordered, Open, by $this(Type) Constraints
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
valueString | string | There are no (further) constraints on this element Data Type | ||
valueBoolean | boolean | There are no (further) constraints on this element Data Type | ||
valueInteger | integer | There are no (further) constraints on this element Data Type | ||
valueRange | Range | There are no (further) constraints on this element Data Type | ||
valueRatio | Ratio | There are no (further) constraints on this element Data Type | ||
valueSampledData | SampledData | There are no (further) constraints on this element Data Type | ||
valueTime | time | There are no (further) constraints on this element Data Type | ||
valueDateTime | dateTime | There are no (further) constraints on this element Data Type | ||
valuePeriod | Period | There are no (further) constraints on this element Data Type | ||
valueCodeableConcept | Σ I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.value[x]:valueCodeableConcept Indeterminate | No call | Present | Absent. DefinitionThe presence or absence of the variant described in the components. If not searching for specific variations and merely reporting what's found, the profile's value should be set to 'Present'. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. An observation may have; 1) a single value here, 2) both a value and a set of related or component values, or 3) only a set of related or component values. If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL1971-2 (required) Constraints
|
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.dataAbsentReason Why the result is missing DefinitionProvides a reason why the expected value in the element Observation.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. Null or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "specimen unsatisfactory". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Note that an observation may only be reported if there are values to report. For example differential cell counts values may be reported only when > 0. Because of these options, use-case agreements are required to interpret general observations for null or exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
note | 0..* | Coded Annotation | There are no (further) constraints on this element Element IdObservation.note Comments about the Observation that also contain a coded type DefinitionA text note which also contains information about who made the statement and when. Need to be able to provide free text additional information. Notes SHALL NOT contain information which can be captured in a structured way. May include general statements about the observation, or statements about significant, unexpected or unreliable results values, or information about its source when relevant to its interpretation. The CodedAnnotation data type, while not allowing for or intending to make the content computable, does allow the author to indicate the type of note. This does not replace the use of interpretation, value, or component values. One important note is that Annotation is a FHIR data type, this is NOT about annotations in the genomic context.
| |
bodySite | 0..1 | CodeableConcept | There are no (further) constraints on this element Element IdObservation.bodySite Observed body part DefinitionIndicates the site on the subject's body where the observation was made (i.e. the target site). Only used if not implicit in code found in Observation.code. In many systems, this may be represented as a related observation instead of an inline component. If the use case requires BodySite to be handled as a separate resource (e.g. to identify and track separately) then use the standard extension bodySite. Codes describing anatomical locations. May include laterality. SNOMEDCTBodyStructures (example)Constraints
| |
method | S | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.method Sequencing | SNP array | PCR | Computational analysis | ... DefinitionIndicates the mechanism used to perform the observation. In some cases, method can impact results and is thus used for determining whether results can be compared or determining significance of results. Only used if not implicit in code for Observation.code. Methods for simple observations. http://loinc.org/vs/LL4048-6 (extensible)Constraints
|
specimen | S I | 0..1 | Reference(Specimen) | There are no (further) constraints on this element Element IdObservation.specimen Specimen used for this observation DefinitionThe specimen that was used when this observation was made. Should only be used if not implicit in code found in
|
device | S I | 0..1 | Reference(Device | DeviceMetric) | There are no (further) constraints on this element Element IdObservation.device (Measurement) Device DefinitionThe device used to generate the observation data. Note that this is not meant to represent a device involved in the transmission of the result, e.g., a gateway. Such devices may be documented using the Provenance resource where relevant. Reference(Device | DeviceMetric) Constraints
|
referenceRange | I | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.referenceRange Provides guide for interpretation DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Multiple reference ranges are interpreted as an "OR". In other words, to represent two distinct target populations, two Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
|
low | I | 0..1 | SimpleQuantity | There are no (further) constraints on this element Element IdObservation.referenceRange.low Low Range, if relevant DefinitionThe value of the low bound of the reference range. The low bound of the reference range endpoint is inclusive of the value (e.g. reference range is >=5 - <=9). If the low bound is omitted, it is assumed to be meaningless (e.g. reference range is <=2.3). The context of use may frequently define what kind of quantity this is and therefore what kind of units can be used. The context of use may also restrict the values for the comparator.
|
high | I | 0..1 | SimpleQuantity | There are no (further) constraints on this element Element IdObservation.referenceRange.high High Range, if relevant DefinitionThe value of the high bound of the reference range. The high bound of the reference range endpoint is inclusive of the value (e.g. reference range is >=5 - <=9). If the high bound is omitted, it is assumed to be meaningless (e.g. reference range is >= 2.3). The context of use may frequently define what kind of quantity this is and therefore what kind of units can be used. The context of use may also restrict the values for the comparator.
|
type | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.referenceRange.type Reference range qualifier DefinitionCodes to indicate the what part of the targeted reference population it applies to. For example, the normal or therapeutic range. Need to be able to say what kind of reference range this is - normal, recommended, therapeutic, etc., - for proper interpretation. This SHOULD be populated if there is more than one range. If this element is not present then the normal range is assumed. Code for the meaning of a reference range. ObservationReferenceRangeMeaningCodes (preferred)Constraints
| |
appliesTo | 0..* | CodeableConcept | There are no (further) constraints on this element Element IdObservation.referenceRange.appliesTo Reference range population DefinitionCodes to indicate the target population this reference range applies to. For example, a reference range may be based on the normal population or a particular sex or race. Multiple Need to be able to identify the target population for proper interpretation. This SHOULD be populated if there is more than one range. If this element is not present then the normal population is assumed. Codes identifying the population the reference range applies to. ObservationReferenceRangeAppliesToCodes (example)Constraints
| |
age | I | 0..1 | Range | There are no (further) constraints on this element Element IdObservation.referenceRange.age Applicable age range, if relevant DefinitionThe age at which this reference range is applicable. This is a neonatal age (e.g. number of weeks at term) if the meaning says so. Some analytes vary greatly over age. The stated low and high value are assumed to have arbitrarily high precision when it comes to determining which values are in the range. I.e. 1.99 is not in the range 2 -> 3.
|
text | 0..1 | string | There are no (further) constraints on this element Element IdObservation.referenceRange.text Text based reference range in an observation DefinitionText based reference range in an observation which may be used when a quantitative range is not appropriate for an observation. An example would be a reference value of "Negative" or a list or table of "normals". Note that FHIR strings SHALL NOT exceed 1MB in size
| |
hasMember | Σ I | 0..* | Reference(Observation | QuestionnaireResponse | MolecularSequence) | There are no (further) constraints on this element Element IdObservation.hasMember Related resource that belongs to the Observation group DefinitionThis observation is a group observation (e.g. a battery, a panel of tests, a set of vital sign measurements) that includes the target as a member of the group. When using this element, an observation will typically have either a value or a set of related resources, although both may be present in some cases. For a discussion on the ways Observations can assembled in groups together, see Notes below. Note that a system may calculate results from QuestionnaireResponse into a final score and represent the score as an Observation. Reference(Observation | QuestionnaireResponse | MolecularSequence) Constraints
|
derivedFrom | Σ I | 0..* | Reference(DocumentReference | ImagingStudy | Media | QuestionnaireResponse | Observation | MolecularSequence) | There are no (further) constraints on this element Element IdObservation.derivedFrom Related measurements the observation is made from DefinitionThe target resource that represents a measurement from which this observation value is derived. For example, a calculated anion gap or a fetal measurement based on an ultrasound image. All the reference choices that are listed in this element can represent clinical observations and other measurements that may be the source for a derived value. The most common reference will be another Observation. For a discussion on the ways Observations can assembled in groups together, see Notes below. Reference(DocumentReference | ImagingStudy | Media | QuestionnaireResponse | Observation | MolecularSequence) Constraints
|
component | Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component Component results DefinitionSome observations have multiple component observations. These component observations are expressed as separate code value pairs that share the same attributes. Examples include systolic and diastolic component observations for blood pressure measurement and multiple component observations for genetics observations. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below. Unordered, Open, by code(Pattern) Constraints
|
(All Slices) | There are no (further) constraints on this element | |||
code | Σ | 1..1 | CodeableConcept | There are no (further) constraints on this element Element IdObservation.component.code Type of component observation (code / type) DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component.value[x] Actual component result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
valueString | string | There are no (further) constraints on this element Data Type | ||
valueBoolean | boolean | There are no (further) constraints on this element Data Type | ||
valueInteger | integer | There are no (further) constraints on this element Data Type | ||
valueRange | Range | There are no (further) constraints on this element Data Type | ||
valueRatio | Ratio | There are no (further) constraints on this element Data Type | ||
valueSampledData | SampledData | There are no (further) constraints on this element Data Type | ||
valueTime | time | There are no (further) constraints on this element Data Type | ||
valueDateTime | dateTime | There are no (further) constraints on this element Data Type | ||
valuePeriod | Period | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
conclusion-string | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:conclusion-string Clinical Conclusion DefinitionConcise and clinically contextualized summary conclusion (interpretation/impression) of the observation Need to be able to provide a conclusion that is not lost among the basic result data. An example would be the interpretative information, typically canned, about a variant identified in the patient.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.code conclusion-string DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/tbd-codes-cs", "code": "conclusion-string" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.value[x] Summary conclusion (interpretation/impression) DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueString | string | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
gene-studied | S Σ | 0..* | BackboneElement | Element IdObservation.component:gene-studied Gene Studied DefinitionThe gene(s) on which the variant is located. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:gene-studied.code 48018-6 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48018-6" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:gene-studied.value[x] The HGNC gene symbol is to be used as display text and the HGNC gene ID used as the code. If no HGNC code issued for this gene yet, NCBI gene IDs SHALL be used. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:gene-studied.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:gene-studied.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:gene-studied.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
cytogenetic-location | S Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location Cytogenetic (Chromosome) Location DefinitionThe relevant chromosomal region. The combination of numbers and letters provide a genetic 'address'. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.code 48001-2 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48001-2" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.value[x] Example: 1q21.1 DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
reference-sequence-assembly | S Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly Human Reference Sequence Assembly DefinitionThe reference genome/assembly used in this analysis. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.code 62374-4 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "62374-4" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.value[x] GRCh37 | GRCh38 | ... DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL1040-6 (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
coding-hgvs | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:coding-hgvs Coding (cDNA) Change - cHGVS DefinitionDescription of the coding (cDNA) sequence change using a valid HGVS-formatted string. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:coding-hgvs.code 48004-6 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48004-6" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:coding-hgvs.value[x] A valid HGVS-formatted 'c.' string, e.g. NM_005228.5:c.2369C>T. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:coding-hgvs.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:coding-hgvs.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:coding-hgvs.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
genomic-hgvs | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:genomic-hgvs Genomic (gDNA) Change - gHGVS DefinitionDescription of the genomic (gDNA) sequence change using a valid HGVS-formatted string. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:genomic-hgvs.code 81290-9 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81290-9" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:genomic-hgvs.value[x] A valid HGVS-formatted 'g.' string, e.g. NC_000016.9:g.2124200_2138612dup DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:genomic-hgvs.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:genomic-hgvs.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:genomic-hgvs.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
cytogenomic-nomenclature | Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:cytogenomic-nomenclature Cytogenomic Nomenclature (ISCN) DefinitionFully describes a variant with a single code. Typically a large variant such as a mosaic, abnormal chromosome numbers, etc. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:cytogenomic-nomenclature.code 81291-7 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81291-7" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:cytogenomic-nomenclature.value[x] Actual component result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Binding not yet defined (unbound) (example)Constraints
| |
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:cytogenomic-nomenclature.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:cytogenomic-nomenclature.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:cytogenomic-nomenclature.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
genomic-ref-seq | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:genomic-ref-seq Genomic Reference Sequence DefinitionID of the genomic reference sequence, which includes transcribed and non transcribed stretches Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:genomic-ref-seq.code 48013-7 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48013-7" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:genomic-ref-seq.value[x] Versioned genomic reference sequence identifier DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Multiple bindings acceptable (NCBI or LRG) (unbound) (example)Constraints
| |
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:genomic-ref-seq.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:genomic-ref-seq.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:genomic-ref-seq.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
transcript-ref-seq | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:transcript-ref-seq Reference Transcript DefinitionNCBI's RefSeq ('NM_...'), Ensembl ('ENST...'), and LRG ('LRG...' plus 't1' to indicate transcript) Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:transcript-ref-seq.code 51958-7 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "51958-7" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:transcript-ref-seq.value[x] Versioned transcript reference sequence identifier DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Multiple bindings acceptable (NCBI or LRG) (unbound) (example)Constraints
| |
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:transcript-ref-seq.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:transcript-ref-seq.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:transcript-ref-seq.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
exact-start-end | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:exact-start-end Exact Start-End DefinitionThe exact integer-based genomic coordinates of the start and end of the variant region. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:exact-start-end.code 81254-5 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81254-5" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:exact-start-end.value[x] Range in question. 'High' can be omitted for single nucleotide variants. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueRange | Range | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:exact-start-end.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:exact-start-end.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:exact-start-end.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
inner-start-end | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:inner-start-end Inner Start-End DefinitionThe genomic coordinates of the narrowest genomic range in which the variant might reside. Used when the exact boundaries of the variant are not clear. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:inner-start-end.code 81302-2 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81302-2" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:inner-start-end.value[x] Imprecise variant inner-bounding range DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueRange | Range | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:inner-start-end.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:inner-start-end.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:inner-start-end.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
outer-start-end | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:outer-start-end Outer Start-End DefinitionThe genomic coordinates of the widest genomic range in which the variant might reside. Used when the exact boundaries of the variant are not clear. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:outer-start-end.code 81301-4 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81301-4" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:outer-start-end.value[x] Imprecise variant outer-bounding range DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueRange | Range | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:outer-start-end.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:outer-start-end.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:outer-start-end.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
coordinate-system | Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:coordinate-system Coordinate System DefinitionThese are different ways of identifying nucleotides or amino acids within a sequence. In the 1-based system, the first unit of the polymer (e.g. the first nucleotide) is counted as number 1. In the 0-based system, the number 0 designates the location before the first nucleotide. Different databases and file types may use different systems. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:coordinate-system.code 92822-6 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "92822-6" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:coordinate-system.value[x] 0-based interval counting | 0-based character counting | 1-based character counting DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL5323-2 (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:coordinate-system.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:coordinate-system.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:coordinate-system.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
ref-allele | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:ref-allele Genomic Ref Allele DefinitionReference values ('normal') examined within the Reference Sequence. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:ref-allele.code 69547-8 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "69547-8" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:ref-allele.value[x] Normalized string per the VCF format. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueString | string | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:ref-allele.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:ref-allele.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:ref-allele.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
alt-allele | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:alt-allele Genomic Alt Allele DefinitionThe genomic alternate allele is the contiguous segment of DNA in the test sample that differs from the reference allele at the same location and thus defines a variant. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:alt-allele.code 69551-0 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "69551-0" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:alt-allele.value[x] Normalized string per the VCF format. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueString | string | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:alt-allele.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:alt-allele.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:alt-allele.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
coding-change-type | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:coding-change-type Coding DNA Change Type DefinitionType of DNA change observed. Convenience property for variants with exact breakpoints, required otherwise. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:coding-change-type.code 48019-4 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48019-4" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:coding-change-type.value[x] deletion | insertion | delins | SNV | copy_number_gain | copy_number_loss | ... (many) DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Concepts in sequence ontology under SO:0002072 DNAChangeTypeVS (extensible)Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:coding-change-type.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:coding-change-type.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:coding-change-type.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
genomic-source-class | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:genomic-source-class Genomic Source Class DefinitionThe genomic class of the specimen being analyzed: Germline for inherited genome, somatic for cancer genome, and prenatal for fetal genome. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:genomic-source-class.code 48002-0 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48002-0" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:genomic-source-class.value[x] Germline | Somatic | Fetal | Likely germline | Likely somatic | Likely fetal | Unknown genomic origin | De novo DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL378-1 (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:genomic-source-class.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:genomic-source-class.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:genomic-source-class.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
sample-allelic-frequency | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency Sample Allelic Frequency DefinitionThe relative frequency of the allele at a given locus in the sample. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.code 81258-6 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81258-6" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.value[x] Relative frequency in the sample DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
value | Σ | 0..1 | decimal | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.value[x].value Numerical value (with implicit precision) DefinitionThe value of the measured amount. The value includes an implicit precision in the presentation of the value. Precision is handled implicitly in almost all cases of measurement. The implicit precision in the value should always be honored. Monetary values have their own rules for handling precision (refer to standard accounting text books).
|
comparator | Σ ?! | 0..1 | codeBinding | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.value[x].comparator < | <= | >= | > - how to understand the value DefinitionHow the value should be understood and represented - whether the actual value is greater or less than the stated value due to measurement issues; e.g. if the comparator is "<" , then the real value is < stated value. Need a framework for handling measures where the value is <5ug/L or >400mg/L due to the limitations of measuring methodology. Note that FHIR strings SHALL NOT exceed 1MB in size If there is no comparator, then there is no modification of the value How the Quantity should be understood and represented. QuantityComparator (required)Constraints
|
unit | Σ | 0..1 | string | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.value[x].unit Unit representation DefinitionA human-readable form of the unit. There are many representations for units of measure and in many contexts, particular representations are fixed and required. I.e. mcg for micrograms. Note that FHIR strings SHALL NOT exceed 1MB in size
|
system | Σ I | 0..1 | uriPattern | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.value[x].system System that defines coded unit form DefinitionThe identification of the system that provides the coded form of the unit. Need to know the system that defines the coded form of the unit. see http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://unitsofmeasure.org
|
code | Σ | 0..1 | code | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.value[x].code Coded form of the unit DefinitionA computer processable form of the unit in some unit representation system. Need a computable form of the unit that is fixed across all forms. UCUM provides this for quantities, but SNOMED CT provides many units of interest. The preferred system is UCUM, but SNOMED CT can also be used (for customary units) or ISO 4217 for currency. The context of use may additionally require a code from a particular system.
|
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:sample-allelic-frequency.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
allelic-read-depth | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:allelic-read-depth Allelic Read Depth DefinitionSpecifies the number of reads that identified the allele in question whether it consists of one or a small sequence of contiguous nucleotides. Different methods and purposes require different numbers of reads to be acceptable. Often >400, sometimes as few as 2-4. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:allelic-read-depth.code 82121-5 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "82121-5" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:allelic-read-depth.value[x] Unfiltered count of supporting reads DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:allelic-read-depth.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:allelic-read-depth.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:allelic-read-depth.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
allelic-state | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:allelic-state Allelic State DefinitionThe observed level of occurrence of the variant in the set of chromosomes. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:allelic-state.code 53034-5 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "53034-5" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:allelic-state.value[x] Heteroplasmic | Homoplasmic | Homozygous | Heterozygous | Hemizygous DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL381-5 (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:allelic-state.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:allelic-state.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:allelic-state.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
variant-inheritance | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:variant-inheritance Variant Inheritance DefinitionBy which parent the variant was inherited in the patient, if known. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:variant-inheritance.code variant-inheritance DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/tbd-codes-cs", "code": "variant-inheritance" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:variant-inheritance.value[x] Maternal | Paternal | Unknown DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. VariantInheritanceVS (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:variant-inheritance.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:variant-inheritance.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:variant-inheritance.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
variation-code | S Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:variation-code Variation Code DefinitionAccession number in a variant database such as ClinVar, given for cross-reference. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:variation-code.code 81252-9 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "81252-9" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:variation-code.value[x] ClinVar ID or similar DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Multiple bindings acceptable (unbound) (example)Constraints
| |
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:variation-code.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:variation-code.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:variation-code.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
chromosome-identifier | S Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:chromosome-identifier Chromosome Identifier DefinitionAn indicator, enumerated in humans by numbers 1-22, X, and Y, representing the chromosome on which the variant is located. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:chromosome-identifier.code 48000-4 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48000-4" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:chromosome-identifier.value[x] Chromosome 1 | Chromosome 2 | ... | Chromosome 22 | Chromosome X | Chromosome Y DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL2938-0 (required) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:chromosome-identifier.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:chromosome-identifier.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:chromosome-identifier.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
protein-hgvs | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:protein-hgvs Protein (Amino Acid) Change - pHGVS DefinitionDescription of the protein (amino acid) sequence change using a valid HGVS-formatted string. The description of the variant is surrounded in parentheses if it is calculated rather than directly observed. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:protein-hgvs.code 48005-3 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48005-3" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:protein-hgvs.value[x] A valid HGVS-formatted 'p.' string, e.g. NP_000050.2:p.(Asn1836Lys) DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:protein-hgvs.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:protein-hgvs.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:protein-hgvs.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
amino-acid-change-type | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:amino-acid-change-type Amino Acid Change Type DefinitionCodified type for associated Amino Acid Marker, for convenience. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:amino-acid-change-type.code 48006-1 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48006-1" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:amino-acid-change-type.value[x] Wild type | Deletion | Duplication | Frameshift | Initiating Methionine | Insertion | Insertion and Deletion | Missense | Nonsense | Silent DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL380-7 (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:amino-acid-change-type.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:amino-acid-change-type.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:amino-acid-change-type.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
molecular-consequence | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:molecular-consequence Molecular Consequence DefinitionThe calculated or observed effect of a variant on its downstream transcript and, if applicable, ensuing protein sequence. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:molecular-consequence.code molecular-consequence DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/tbd-codes-cs", "code": "molecular-consequence" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:molecular-consequence.value[x] stop_lost | stop_gained | inframe_insertion | frameshift_variant | ... (many) DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Concepts in sequence ontology under SO:0001537. MolecularConsequenceVS (extensible)Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:molecular-consequence.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:molecular-consequence.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:molecular-consequence.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
copy-number | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:copy-number Genomic Structural Variant Copy Number DefinitionThe copy number of the large variant. In HGVS, this is the numeric value following the “X”. It is a unit-less value. Note that a copy number of 1 can imply a deletion. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:copy-number.code 82155-3 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "82155-3" } ] }
|
value[x] | Σ I | 0..1 | There are no (further) constraints on this element Element IdObservation.component:copy-number.value[x] Actual component result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:copy-number.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:copy-number.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:copy-number.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
variant-confidence-status | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:variant-confidence-status Variant Confidence Status DefinitionA code that represents the confidence of a true positive variant call. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:variant-confidence-status.code variant-confidence-status DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/tbd-codes-cs", "code": "variant-confidence-status" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:variant-confidence-status.value[x] High | Intermediate | Low DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. VariantConfidenceStatusVS (required) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:variant-confidence-status.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:variant-confidence-status.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:variant-confidence-status.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
dna-region | S Σ | 0..* | BackboneElement | Element IdObservation.component:dna-region DNA region name [Identifier] DefinitionA human readable name for the region of interest. Typically Exon #, Intron # or other. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | Element IdObservation.component:dna-region.code 47999-8 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "47999-8" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:dna-region.value[x] Actual component result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueString | string | Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:dna-region.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:dna-region.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:dna-region.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
gene-fusion | S Σ | 0..1 | BackboneElement | Element IdObservation.component:gene-fusion Gene fusion transcript details in Blood or Tissue by Molecular genetics method Narrative DefinitionSome observations have multiple component observations. These component observations are expressed as separate code value pairs that share the same attributes. Examples include systolic and diastolic component observations for blood pressure measurement and multiple component observations for genetics observations. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | Element IdObservation.component:gene-fusion.code Type of component observation (code / type) DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "95123-6" } ] }
|
value[x] | Σ | 1..1 | Binding | Element IdObservation.component:gene-fusion.value[x] HGNC recommends for products of gene translocations or fusions (format GENESYMBOL1::GENESYMBOL2) and readthrough transcripts (format GENESYMBOL1-GENESYMBOL2) DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
|
valueCodeableConcept | CodeableConcept | Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:gene-fusion.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:gene-fusion.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:gene-fusion.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
detection-limit | S Σ | 0..1 | BackboneElement | Element IdObservation.component:detection-limit Laboratory device Detection limit DefinitionSome observations have multiple component observations. These component observations are expressed as separate code value pairs that share the same attributes. Examples include systolic and diastolic component observations for blood pressure measurement and multiple component observations for genetics observations. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | Element IdObservation.component:detection-limit.code Type of component observation (code / type) DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "87706-8" } ] }
|
value[x] | Σ | 0..1 | Element IdObservation.component:detection-limit.value[x] Usually reported as percentage. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueQuantity | Quantity | Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:detection-limit.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:detection-limit.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:detection-limit.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
|
Snapshot
Observation | I | Observation | There are no (further) constraints on this element Element IdObservation Variant Alternate namesVital Signs, Measurement, Results, Tests DefinitionMeasurements and simple assertions made about a patient, device or other subject. Used for simple observations such as device measurements, laboratory atomic results, vital signs, height, weight, smoking status, comments, etc. Other resources are used to provide context for observations such as laboratory reports, etc.
| |
extension | I | 0..* | Extension | There are no (further) constraints on this element Element IdObservation.extension Additional content defined by implementations Alternate namesextensions, user content DefinitionMay be used to represent additional information that is not part of the basic definition of the resource. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone. Unordered, Open, by url(Value) Constraints
|
secondary-finding | I | 0..1 | Extension(CodeableConcept) | There are no (further) constraints on this element Element IdObservation.extension:secondary-finding Secondary findings are genetic test results that provide information about variants in a gene unrelated to the primary purpose for the testing, most often discovered when [Whole Exome Sequencing (WES)](https://en.wikipedia.org/wiki/Exome_sequencing) or [Whole Genome Sequencing (WGS)](https://en.wikipedia.org/wiki/Whole_genome_sequencing) is performed. This extension should be used to denote when a genetic finding is being shared as a secondary finding, and ideally refer to a corresponding guideline or policy statement. For more detail, please see: https://ghr.nlm.nih.gov/primer/testing/secondaryfindings Alternate namesextensions, user content DefinitionSecondary findings are genetic test results that provide information about variants in a gene unrelated to the primary purpose for the testing, most often discovered when Whole Exome Sequencing (WES) or Whole Genome Sequencing (WGS) is performed. This extension should be used to denote when a genetic finding is being shared as a secondary finding, and ideally refer to a corresponding guideline or policy statement. For more detail, please see: https://ghr.nlm.nih.gov/primer/testing/secondaryfindings. There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone. http://hl7.org/fhir/StructureDefinition/observation-secondaryFinding Constraints
|
body-structure | I | 0..1 | Extension(Reference(BodyStructure)) | There are no (further) constraints on this element Element IdObservation.extension:body-structure Target anatomic location or structure Alternate namesextensions, user content DefinitionRecord details about the anatomical location of a specimen or body part. This resource may be used when a coded concept does not provide the necessary detail needed for the use case. There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone. Extension(Reference(BodyStructure)) Extension URLhttp://hl7.org/fhir/StructureDefinition/bodySite Constraints
|
identifier | Σ | 0..* | Identifier | There are no (further) constraints on this element Element IdObservation.identifier Business Identifier for observation DefinitionA unique identifier assigned to this observation. Allows observations to be distinguished and referenced.
|
basedOn | Σ I | 0..* | Reference(CarePlan | DeviceRequest | ImmunizationRecommendation | MedicationRequest | NutritionOrder | ServiceRequest) | There are no (further) constraints on this element Element IdObservation.basedOn Fulfills plan, proposal or order Alternate namesFulfills DefinitionA plan, proposal or order that is fulfilled in whole or in part by this event. For example, a MedicationRequest may require a patient to have laboratory test performed before it is dispensed. Allows tracing of authorization for the event and tracking whether proposals/recommendations were acted upon. References SHALL be a reference to an actual FHIR resource, and SHALL be resolveable (allowing for access control, temporary unavailability, etc.). Resolution can be either by retrieval from the URL, or, where applicable by resource type, by treating an absolute reference as a canonical URL and looking it up in a local registry/repository. Reference(CarePlan | DeviceRequest | ImmunizationRecommendation | MedicationRequest | NutritionOrder | ServiceRequest) Constraints
|
partOf | Σ I | 0..* | Reference(MedicationAdministration | MedicationDispense | MedicationStatement | Procedure | Immunization | ImagingStudy) | There are no (further) constraints on this element Element IdObservation.partOf Part of referenced event Alternate namesContainer DefinitionA larger event of which this particular Observation is a component or step. For example, an observation as part of a procedure. To link an Observation to an Encounter use Reference(MedicationAdministration | MedicationDispense | MedicationStatement | Procedure | Immunization | ImagingStudy) Constraints
|
status | S Σ ?! | 1..1 | codeBinding | There are no (further) constraints on this element Element IdObservation.status registered | preliminary | final | amended + DefinitionThe status of the result value. Need to track the status of individual results. Some results are finalized before the whole report is finalized. This element is labeled as a modifier because the status contains codes that mark the resource as not currently valid. Codes providing the status of an observation. ObservationStatus (required)Constraints
|
category | S | 1..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.category Classification of type of observation DefinitionA code that classifies the general type of observation being made. Used for filtering what observations are retrieved and displayed. In addition to the required category valueset, this element allows various categorization schemes based on the owner’s definition of the category and effectively multiple categories can be used at once. The level of granularity is defined by the category concepts in the value set. Unordered, Open, by coding(Value) BindingCodes for high level observation categories. ObservationCategoryCodes (preferred)Constraints
|
labCategory | 1..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.category:labCategory Classification of type of observation DefinitionA code that classifies the general type of observation being made. Used for filtering what observations are retrieved and displayed. In addition to the required category valueset, this element allows various categorization schemes based on the owner’s definition of the category and effectively multiple categories can be used at once. The level of granularity is defined by the category concepts in the value set. Codes for high level observation categories. ObservationCategoryCodes (preferred)Constraints
| |
coding | Σ | 1..* | CodingPattern | There are no (further) constraints on this element Element IdObservation.category:labCategory.coding Code defined by a terminology system DefinitionA reference to a code defined by a terminology system. Allows for alternative encodings within a code system, and translations to other code systems. Codes may be defined very casually in enumerations, or code lists, up to very formal definitions such as SNOMED CT - see the HL7 v3 Core Principles for more information. Ordering of codings is undefined and SHALL NOT be used to infer meaning. Generally, at most only one of the coding values will be labeled as UserSelected = true.
{ "system": "http://terminology.hl7.org/CodeSystem/observation-category", "code": "laboratory" }
|
text | Σ | 0..1 | string | There are no (further) constraints on this element Element IdObservation.category:labCategory.text Plain text representation of the concept DefinitionA human language representation of the concept as seen/selected/uttered by the user who entered the data and/or which represents the intended meaning of the user. The codes from the terminologies do not always capture the correct meaning with all the nuances of the human using them, or sometimes there is no appropriate code at all. In these cases, the text is used to capture the full meaning of the source. Very often the text is the same as a displayName of one of the codings.
|
code | S Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.code 69548-6 Alternate namesName DefinitionDescribes what was observed. Sometimes this is called the observation "name". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and, if present, component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "69548-6" } ] }
|
subject | S Σ I | 1..1 | MII-Reference(Patient | Group) | Element IdObservation.subject A reference from one resource to another DefinitionA reference from one resource to another. Observations have no value if you don't know who or what they're about. References SHALL be a reference to an actual FHIR resource, and SHALL be resolveable (allowing for access control, temporary unavailability, etc.). Resolution can be either by retrieval from the URL, or, where applicable by resource type, by treating an absolute reference as a canonical URL and looking it up in a local registry/repository. MII-Reference(Patient | Group) Constraints
|
focus | Σ I | 0..* | Reference(Resource) | There are no (further) constraints on this element Element IdObservation.focus What the observation is about, when it is not about the subject of record DefinitionThe actual focus of an observation when it is not the patient of record representing something or someone associated with the patient such as a spouse, parent, fetus, or donor. For example, fetus observations in a mother's record. The focus of an observation could also be an existing condition, an intervention, the subject's diet, another observation of the subject, or a body structure such as tumor or implanted device. An example use case would be using the Observation resource to capture whether the mother is trained to change her child's tracheostomy tube. In this example, the child is the patient of record and the mother is the focus. Typically, an observation is made about the subject - a patient, or group of patients, location, or device - and the distinction between the subject and what is directly measured for an observation is specified in the observation code itself ( e.g., "Blood Glucose") and does not need to be represented separately using this element. Use
|
encounter | Σ I | 0..1 | Reference(Encounter) | There are no (further) constraints on this element Element IdObservation.encounter Healthcare event during which this observation is made Alternate namesContext DefinitionThe healthcare event (e.g. a patient and healthcare provider interaction) during which this observation is made. For some observations it may be important to know the link between an observation and a particular encounter. This will typically be the encounter the event occurred within, but some events may be initiated prior to or after the official completion of an encounter but still be tied to the context of the encounter (e.g. pre-admission laboratory tests).
|
effective[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.effective[x] Clinically relevant time/time-period for observation Alternate namesOccurrence DefinitionThe time or time-period the observed value is asserted as being true. For biological subjects - e.g. human patients - this is usually called the "physiologically relevant time". This is usually either the time of the procedure or of specimen collection, but very often the source of the date/time is not known, only the date/time itself. Knowing when an observation was deemed true is important to its relevance as well as determining trends. At least a date should be present unless this observation is a historical report. For recording imprecise or "fuzzy" times (For example, a blood glucose measurement taken "after breakfast") use the Timing datatype which allow the measurement to be tied to regular life events.
| |
effectiveDateTime | dateTime | There are no (further) constraints on this element Data Type | ||
effectivePeriod | Period | There are no (further) constraints on this element Data Type | ||
effectiveTiming | Timing | There are no (further) constraints on this element Data Type | ||
effectiveInstant | instant | There are no (further) constraints on this element Data Type | ||
issued | Σ | 0..1 | instant | There are no (further) constraints on this element Element IdObservation.issued Date/Time this version was made available DefinitionThe date and time this version of the observation was made available to providers, typically after the results have been reviewed and verified. For Observations that don’t require review and verification, it may be the same as the
|
performer | Σ I | 0..* | Reference(Practitioner | PractitionerRole | Organization | CareTeam | Patient | RelatedPerson) | There are no (further) constraints on this element Element IdObservation.performer Who is responsible for the observation DefinitionWho was responsible for asserting the observed value as "true". May give a degree of confidence in the observation and also indicates where follow-up questions should be directed. References SHALL be a reference to an actual FHIR resource, and SHALL be resolveable (allowing for access control, temporary unavailability, etc.). Resolution can be either by retrieval from the URL, or, where applicable by resource type, by treating an absolute reference as a canonical URL and looking it up in a local registry/repository. Reference(Practitioner | PractitionerRole | Organization | CareTeam | Patient | RelatedPerson) Constraints
|
value[x] | S Σ I | 0..1 | There are no (further) constraints on this element Element IdObservation.value[x] Actual result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. An observation may have; 1) a single value here, 2) both a value and a set of related or component values, or 3) only a set of related or component values. If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. Unordered, Open, by $this(Type) Constraints
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
valueString | string | There are no (further) constraints on this element Data Type | ||
valueBoolean | boolean | There are no (further) constraints on this element Data Type | ||
valueInteger | integer | There are no (further) constraints on this element Data Type | ||
valueRange | Range | There are no (further) constraints on this element Data Type | ||
valueRatio | Ratio | There are no (further) constraints on this element Data Type | ||
valueSampledData | SampledData | There are no (further) constraints on this element Data Type | ||
valueTime | time | There are no (further) constraints on this element Data Type | ||
valueDateTime | dateTime | There are no (further) constraints on this element Data Type | ||
valuePeriod | Period | There are no (further) constraints on this element Data Type | ||
valueCodeableConcept | Σ I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.value[x]:valueCodeableConcept Indeterminate | No call | Present | Absent. DefinitionThe presence or absence of the variant described in the components. If not searching for specific variations and merely reporting what's found, the profile's value should be set to 'Present'. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. An observation may have; 1) a single value here, 2) both a value and a set of related or component values, or 3) only a set of related or component values. If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL1971-2 (required) Constraints
|
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.dataAbsentReason Why the result is missing DefinitionProvides a reason why the expected value in the element Observation.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. Null or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "specimen unsatisfactory". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Note that an observation may only be reported if there are values to report. For example differential cell counts values may be reported only when > 0. Because of these options, use-case agreements are required to interpret general observations for null or exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
note | 0..* | Coded Annotation | There are no (further) constraints on this element Element IdObservation.note Comments about the Observation that also contain a coded type DefinitionA text note which also contains information about who made the statement and when. Need to be able to provide free text additional information. Notes SHALL NOT contain information which can be captured in a structured way. May include general statements about the observation, or statements about significant, unexpected or unreliable results values, or information about its source when relevant to its interpretation. The CodedAnnotation data type, while not allowing for or intending to make the content computable, does allow the author to indicate the type of note. This does not replace the use of interpretation, value, or component values. One important note is that Annotation is a FHIR data type, this is NOT about annotations in the genomic context.
| |
bodySite | 0..1 | CodeableConcept | There are no (further) constraints on this element Element IdObservation.bodySite Observed body part DefinitionIndicates the site on the subject's body where the observation was made (i.e. the target site). Only used if not implicit in code found in Observation.code. In many systems, this may be represented as a related observation instead of an inline component. If the use case requires BodySite to be handled as a separate resource (e.g. to identify and track separately) then use the standard extension bodySite. Codes describing anatomical locations. May include laterality. SNOMEDCTBodyStructures (example)Constraints
| |
method | S | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.method Sequencing | SNP array | PCR | Computational analysis | ... DefinitionIndicates the mechanism used to perform the observation. In some cases, method can impact results and is thus used for determining whether results can be compared or determining significance of results. Only used if not implicit in code for Observation.code. Methods for simple observations. http://loinc.org/vs/LL4048-6 (extensible)Constraints
|
specimen | S I | 0..1 | Reference(Specimen) | There are no (further) constraints on this element Element IdObservation.specimen Specimen used for this observation DefinitionThe specimen that was used when this observation was made. Should only be used if not implicit in code found in
|
device | S I | 0..1 | Reference(Device | DeviceMetric) | There are no (further) constraints on this element Element IdObservation.device (Measurement) Device DefinitionThe device used to generate the observation data. Note that this is not meant to represent a device involved in the transmission of the result, e.g., a gateway. Such devices may be documented using the Provenance resource where relevant. Reference(Device | DeviceMetric) Constraints
|
referenceRange | I | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.referenceRange Provides guide for interpretation DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Multiple reference ranges are interpreted as an "OR". In other words, to represent two distinct target populations, two Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
|
low | I | 0..1 | SimpleQuantity | There are no (further) constraints on this element Element IdObservation.referenceRange.low Low Range, if relevant DefinitionThe value of the low bound of the reference range. The low bound of the reference range endpoint is inclusive of the value (e.g. reference range is >=5 - <=9). If the low bound is omitted, it is assumed to be meaningless (e.g. reference range is <=2.3). The context of use may frequently define what kind of quantity this is and therefore what kind of units can be used. The context of use may also restrict the values for the comparator.
|
high | I | 0..1 | SimpleQuantity | There are no (further) constraints on this element Element IdObservation.referenceRange.high High Range, if relevant DefinitionThe value of the high bound of the reference range. The high bound of the reference range endpoint is inclusive of the value (e.g. reference range is >=5 - <=9). If the high bound is omitted, it is assumed to be meaningless (e.g. reference range is >= 2.3). The context of use may frequently define what kind of quantity this is and therefore what kind of units can be used. The context of use may also restrict the values for the comparator.
|
type | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.referenceRange.type Reference range qualifier DefinitionCodes to indicate the what part of the targeted reference population it applies to. For example, the normal or therapeutic range. Need to be able to say what kind of reference range this is - normal, recommended, therapeutic, etc., - for proper interpretation. This SHOULD be populated if there is more than one range. If this element is not present then the normal range is assumed. Code for the meaning of a reference range. ObservationReferenceRangeMeaningCodes (preferred)Constraints
| |
appliesTo | 0..* | CodeableConcept | There are no (further) constraints on this element Element IdObservation.referenceRange.appliesTo Reference range population DefinitionCodes to indicate the target population this reference range applies to. For example, a reference range may be based on the normal population or a particular sex or race. Multiple Need to be able to identify the target population for proper interpretation. This SHOULD be populated if there is more than one range. If this element is not present then the normal population is assumed. Codes identifying the population the reference range applies to. ObservationReferenceRangeAppliesToCodes (example)Constraints
| |
age | I | 0..1 | Range | There are no (further) constraints on this element Element IdObservation.referenceRange.age Applicable age range, if relevant DefinitionThe age at which this reference range is applicable. This is a neonatal age (e.g. number of weeks at term) if the meaning says so. Some analytes vary greatly over age. The stated low and high value are assumed to have arbitrarily high precision when it comes to determining which values are in the range. I.e. 1.99 is not in the range 2 -> 3.
|
text | 0..1 | string | There are no (further) constraints on this element Element IdObservation.referenceRange.text Text based reference range in an observation DefinitionText based reference range in an observation which may be used when a quantitative range is not appropriate for an observation. An example would be a reference value of "Negative" or a list or table of "normals". Note that FHIR strings SHALL NOT exceed 1MB in size
| |
hasMember | Σ I | 0..* | Reference(Observation | QuestionnaireResponse | MolecularSequence) | There are no (further) constraints on this element Element IdObservation.hasMember Related resource that belongs to the Observation group DefinitionThis observation is a group observation (e.g. a battery, a panel of tests, a set of vital sign measurements) that includes the target as a member of the group. When using this element, an observation will typically have either a value or a set of related resources, although both may be present in some cases. For a discussion on the ways Observations can assembled in groups together, see Notes below. Note that a system may calculate results from QuestionnaireResponse into a final score and represent the score as an Observation. Reference(Observation | QuestionnaireResponse | MolecularSequence) Constraints
|
derivedFrom | Σ I | 0..* | Reference(DocumentReference | ImagingStudy | Media | QuestionnaireResponse | Observation | MolecularSequence) | There are no (further) constraints on this element Element IdObservation.derivedFrom Related measurements the observation is made from DefinitionThe target resource that represents a measurement from which this observation value is derived. For example, a calculated anion gap or a fetal measurement based on an ultrasound image. All the reference choices that are listed in this element can represent clinical observations and other measurements that may be the source for a derived value. The most common reference will be another Observation. For a discussion on the ways Observations can assembled in groups together, see Notes below. Reference(DocumentReference | ImagingStudy | Media | QuestionnaireResponse | Observation | MolecularSequence) Constraints
|
component | Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component Component results DefinitionSome observations have multiple component observations. These component observations are expressed as separate code value pairs that share the same attributes. Examples include systolic and diastolic component observations for blood pressure measurement and multiple component observations for genetics observations. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below. Unordered, Open, by code(Pattern) Constraints
|
(All Slices) | There are no (further) constraints on this element | |||
code | Σ | 1..1 | CodeableConcept | There are no (further) constraints on this element Element IdObservation.component.code Type of component observation (code / type) DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component.value[x] Actual component result DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueQuantity | Quantity | There are no (further) constraints on this element Data Type | ||
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
valueString | string | There are no (further) constraints on this element Data Type | ||
valueBoolean | boolean | There are no (further) constraints on this element Data Type | ||
valueInteger | integer | There are no (further) constraints on this element Data Type | ||
valueRange | Range | There are no (further) constraints on this element Data Type | ||
valueRatio | Ratio | There are no (further) constraints on this element Data Type | ||
valueSampledData | SampledData | There are no (further) constraints on this element Data Type | ||
valueTime | time | There are no (further) constraints on this element Data Type | ||
valueDateTime | dateTime | There are no (further) constraints on this element Data Type | ||
valuePeriod | Period | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
conclusion-string | S Σ | 0..1 | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:conclusion-string Clinical Conclusion DefinitionConcise and clinically contextualized summary conclusion (interpretation/impression) of the observation Need to be able to provide a conclusion that is not lost among the basic result data. An example would be the interpretative information, typically canned, about a variant identified in the patient.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.code conclusion-string DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/tbd-codes-cs", "code": "conclusion-string" } ] }
|
value[x] | Σ | 0..1 | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.value[x] Summary conclusion (interpretation/impression) DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueString | string | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:conclusion-string.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
gene-studied | S Σ | 0..* | BackboneElement | Element IdObservation.component:gene-studied Gene Studied DefinitionThe gene(s) on which the variant is located. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:gene-studied.code 48018-6 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48018-6" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:gene-studied.value[x] The HGNC gene symbol is to be used as display text and the HGNC gene ID used as the code. If no HGNC code issued for this gene yet, NCBI gene IDs SHALL be used. DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:gene-studied.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:gene-studied.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:gene-studied.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
cytogenetic-location | S Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location Cytogenetic (Chromosome) Location DefinitionThe relevant chromosomal region. The combination of numbers and letters provide a genetic 'address'. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.code 48001-2 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "48001-2" } ] }
|
value[x] | Σ | 1..1 | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.value[x] Example: 1q21.1 DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below.
| |
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. For some results, particularly numeric results, an interpretation is necessary to fully understand the significance of a result. Historically used for laboratory results (known as 'abnormal flag' ), its use extends to other use cases where coded interpretations are relevant. Often reported as one or more simple compact codes this element is often placed adjacent to the result value in reports and flow sheets to signal the meaning/normalcy status of the result. Codes identifying interpretations of observations. ObservationInterpretationCodes (extensible)Constraints
| |
referenceRange | 0..* | see (referenceRange) | There are no (further) constraints on this element Element IdObservation.component:cytogenetic-location.referenceRange Provides guide for interpretation of component result DefinitionGuidance on how to interpret the value by comparison to a normal or recommended range. Knowing what values are considered "normal" can help evaluate the significance of a particular result. Need to be able to provide multiple reference ranges for different contexts. Most observations only have one generic reference range. Systems MAY choose to restrict to only supplying the relevant reference range based on knowledge about the patient (e.g., specific to the patient's age, gender, weight and other factors), but this might not be possible or appropriate. Whenever more than one reference range is supplied, the differences between them SHOULD be provided in the reference range and/or age properties.
| |
reference-sequence-assembly | S Σ | 0..* | BackboneElement | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly Human Reference Sequence Assembly DefinitionThe reference genome/assembly used in this analysis. Component observations share the same attributes in the Observation resource as the primary observation and are always treated a part of a single observation (they are not separable). However, the reference range for the primary observation value is not inherited by the component values and is required when appropriate for each component observation. For a discussion on the ways Observations can be assembled in groups together see Notes below.
|
code | Σ | 1..1 | CodeableConceptPattern | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.code 62374-4 DefinitionDescribes what was observed. Sometimes this is called the observation "code". Knowing what kind of observation is being made is essential to understanding the observation. All code-value and component.code-component.value pairs need to be taken into account to correctly understand the meaning of the observation. Codes identifying names of simple observations. LOINCCodes (example)Constraints
{ "coding": [ { "system": "http://loinc.org", "code": "62374-4" } ] }
|
value[x] | Σ | 1..1 | Binding | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.value[x] GRCh37 | GRCh38 | ... DefinitionThe information determined as a result of making the observation, if the information has a simple value. An observation exists to have a value, though it might not if it is in error, or if it represents a group of observations. Used when observation has a set of component observations. An observation may have both a value (e.g. an Apgar score) and component observations (the observations from which the Apgar score was derived). If a value is present, the datatype for this element should be determined by Observation.code. A CodeableConcept with just a text would be used instead of a string if the field was usually coded, or if the type associated with the Observation.code defines a coded value. For additional guidance, see the Notes section below. http://loinc.org/vs/LL1040-6 (extensible) Constraints
|
valueCodeableConcept | CodeableConcept | There are no (further) constraints on this element Data Type | ||
dataAbsentReason | I | 0..1 | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.dataAbsentReason Why the component result is missing DefinitionProvides a reason why the expected value in the element Observation.component.value[x] is missing. For many results it is necessary to handle exceptional values in measurements. "Null" or exceptional values can be represented two ways in FHIR Observations. One way is to simply include them in the value set and represent the exceptions in the value. For example, measurement values for a serology test could be "detected", "not detected", "inconclusive", or "test not done". The alternate way is to use the value element for actual observations and use the explicit dataAbsentReason element to record exceptional values. For example, the dataAbsentReason code "error" could be used when the measurement was not completed. Because of these options, use-case agreements are required to interpret general observations for exceptional values. Codes specifying why the result (`Observation.value[x]`) is missing. DataAbsentReason (extensible)Constraints
|
interpretation | 0..* | CodeableConceptBinding | There are no (further) constraints on this element Element IdObservation.component:reference-sequence-assembly.interpretation High, low, normal, etc. Alternate namesAbnormal Flag DefinitionA categorical assessment of an observation value. For example, high, low, normal. |