

Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis (ACRIBIS)

Kardiologische Dokumentationsstandardisierung und interoperable Biosignal-Erschließung zur optimierten kardiovaskulären Risikoprädiktion

Sven Zenker

GEFÖRDERT VOM

ACRIBiS-Übersicht: Hintergrund Kardiovaskuläre Erkrankungen

- Risikoeinschätzung für kardiovaskuläre Ereignisse und Prognose wichtig für Prävention, Diagnostik und Therapie
- Scores zur Risikostratifizierung existent und empfohlen in Leitlinien
- Biosignalerhebung in klinischer Routine und "Patientendevices" = hohes
 Potential zur Risikostratifizierung

aber

- Score-Nutzung in klinischer Praxis umständlich und zeitintensiv
- Standardisierte IT-Lösungen für Biosignalanalyse zur Nutzung in der Routineversorgung fehlen

ACRIBIS

ACRIBiS-Übersicht: Risikostratifizierung Status quo

- Anamnese
- Körperliche Untersuchung

Labor/Biomarker

Bilddaten

Biosignale

Mobile Sensordaten, **PROMs**

"händisch" separate, nicht interoperable Tools

SCORES

Heart-Score (MI/Stroke)

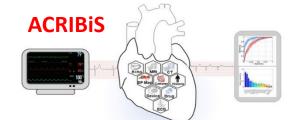
CHADS-Vasc-Score (Kardioembolie/VHF)

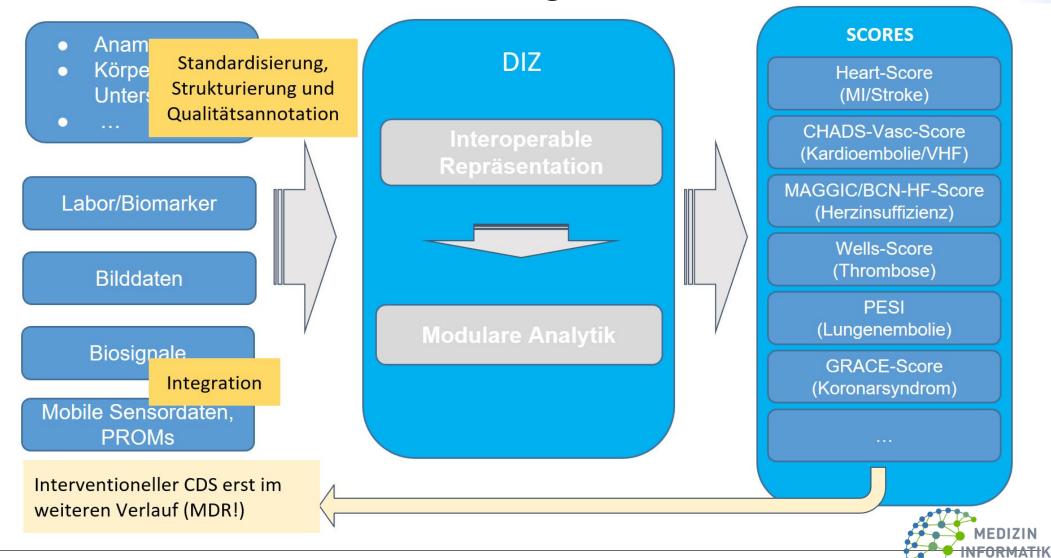
MAGGIC/BCN-HF-Score (Herzinsuffizienz)

> Wells-Score (Thrombose)

PESI (Lungenembolie)

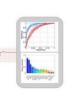
GRACE-Score (Koronarsyndrom)


GEFÖRDERT VOM



EDIZIN

GEFÖRDERT VOM



GEFÖRDERT VOM

ACRIBiS-Übersicht: Risikostratifizierung mit ACR DIZ-Strukturen variabel,

Anam

Körpe Unters

. ...

Standardisierung, Strukturierung und Qualitätsannotation

Labor/Biomarker

Bilddaten

Biosignale

Integration

Mobile Sensordaten, PROMs

Interventioneller CDS erst im weiteren Verlauf (MDR!)

DIZ

Interoperable Repräsentation

Modulare Analytik

Kernstandorte teilen
Kompetenz und
Komponenten, wo
gewünscht und sinnvoll
Beispiel UKB

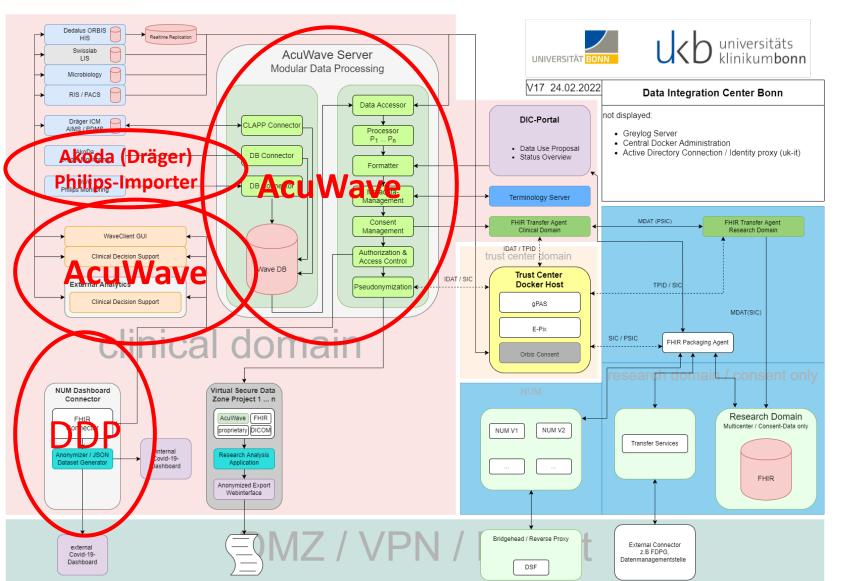
MAGGIC/BCN-HF-Score (Herzinsuffizienz)

Wells-Score (Thrombose)

PESI (Lungenembolie)

GRACE-Score (Koronarsyndrom)

...

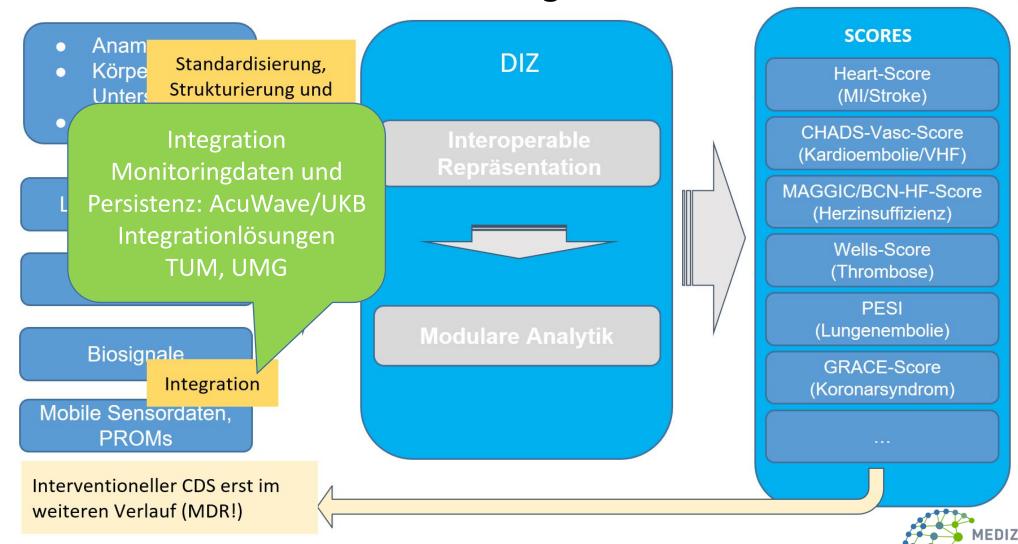

GEFÖRDERT VOM

DIZ "Bonn Style"

ACRIBISrelevante Komponenten

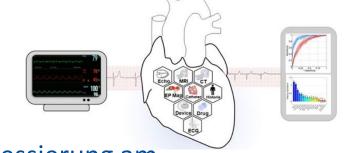
INFORMATIK

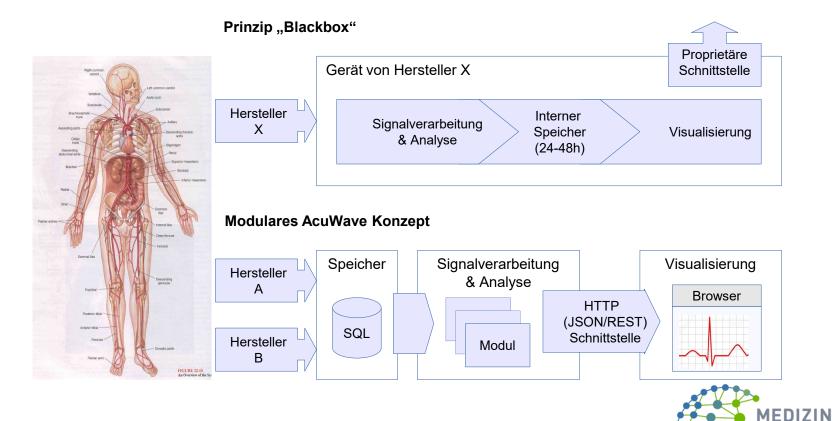
GEFÖRDERT VOM



ACRIBIS | Construction | Constructi

ACRIBiS-Übersicht: Risikostratifizierung mit ACRIBiS

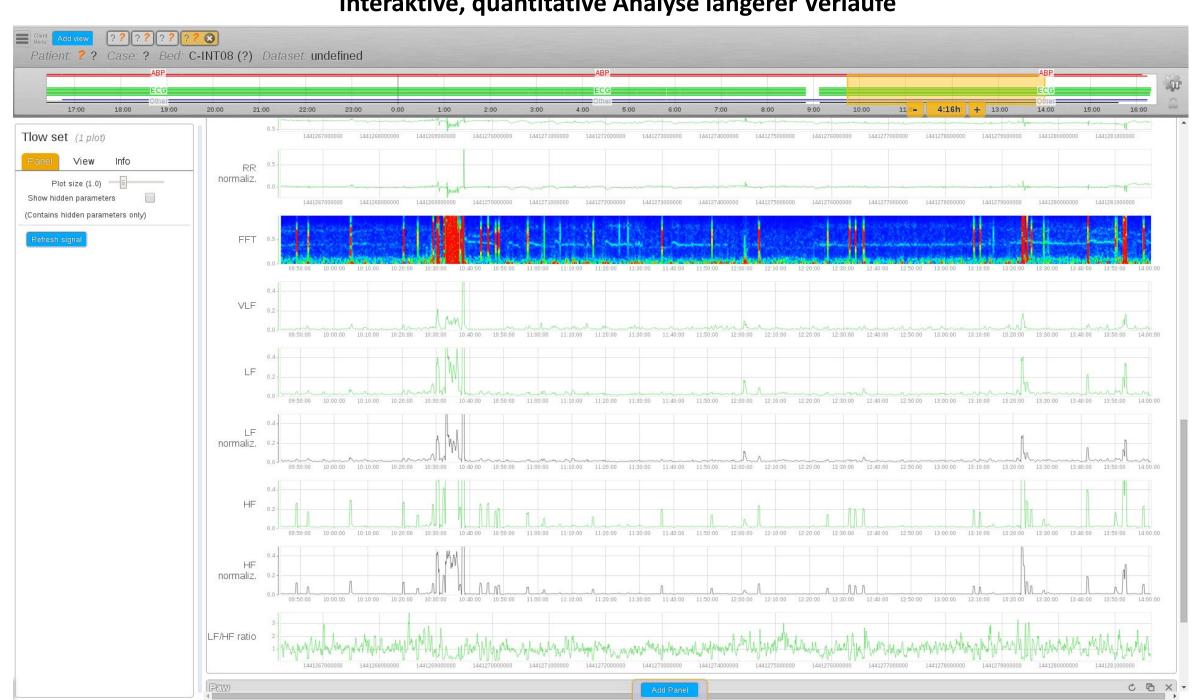

GEFÖRDERT VOM



AcuWave – Architektur und Motivation

Daten in voller Auflösung zu speichern und generische, echtzeitnahe Prozessierung am Patientenbett zu ermöglichen!

GEFÖRDERT VOM

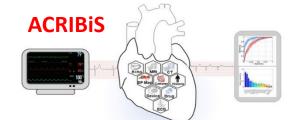


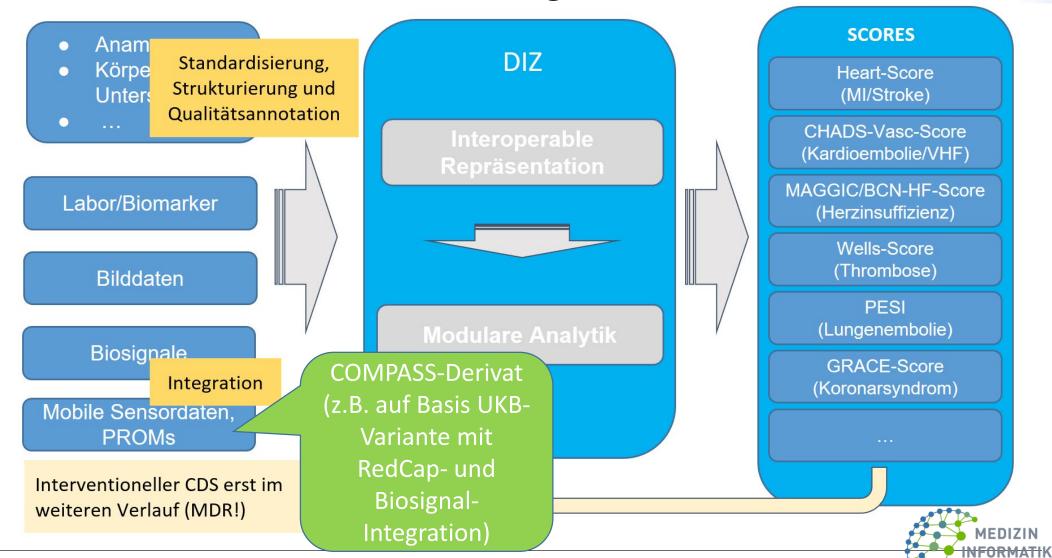
INFORMATIK

Beispiel: Modulare Analysekette Heart Rate Variability (HRV) The Wave Client - ? ← → C | localhost/client/ ## Apps 🕠 How Academia Rese... 🛃 Surf and ride Taiwan... 🗀 UniKlinikum 🕒 25 Inspirational Mov... 🙀 Online Conversion -... 🗜 Seis claves para ser f... 💋 Die 10 schönsten St... 💋 Die 16 schönsten St... 🌃 How to Migrate to a... 🌙 EE4253 GF(2) Calcul... 👲 jameskbeard.com/T... » Deitere Lesezeichen Patient: ? ? Case: 3807277 Bed: ? (?) Dataset: undefined _FCG_ 22:30m0) + Other 7:00 Other 9:00 9:00 21:00 23:00 ECG analysis (C++) (15 plots) Info Heartbeats #3 Low Frequency power (LF) in normalised units: Lower bound 0,04 Upper bound 0,15 [Hz] #4 Power in High frequency range (0.15 Hz < x <= Lower bound 0,15 RR interval Upper bound 0.4 Max. power #5 Power in Low frequency range (0.04 Hz < x <= 0 16:35:00 16:36:00 16:37:00 16:38:00 16:39:00 16:40:00 16:41:00 16:42:00 16:43:00 16:45:00 16:45:00 16:47:00 16:47:00 16:48:00 16:49:00 16:51:00 16:51:00 16:52:00 Lower bound 0,04 Upper bound 0,15 Max. power #6 Power in Very Low frequency range (<= 0.04 Hz interpol. Lower bound 0 Upper bound 0,04 Max. power 16:34:00 16:35:00 16:36:00 16:37:00 16:38:00 16:39:00 16:49:00 16:40:00 16: #7 FFT (math.fft) Window size 180 [Seconds] Step percentage 3 color Max Min manually normaliz. color_Max_value 10 color_Min_value 0 #8 RR normaliz. (math.normalization) 16:32:00 16:33:00 16:34:00 16:35:00 16:36:00 16:37:00 16:38:00 16:37:00 16:38:00 16:37:00 16:42:00 16:42:00 16:42:00 16:42:00 16:45:00 16:45:00 16:46:00 16:47:00 16:48:00 16:47:00 16:48:00 16:47:00 16:47:00 16:48:00 16:48:00 16:4 Window size 5 [Seconds] #9 Spline interpolator (math.splineinterpolator) Min. sampling freq. 2 [Samples per #11 External HBD (ext_hbd) Support ECG 2 Filter induced shift 0,08 (View data filter used for blue values) Apply values and refresh

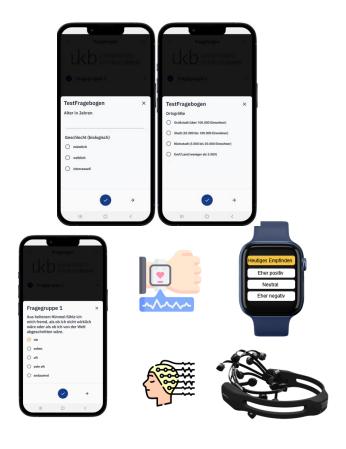
Add Panel

Interaktive, quantitative Analyse längerer Verläufe



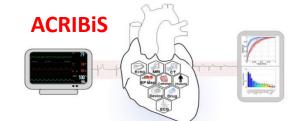

Interaktive, quantitative Analyse längerer Verläufe

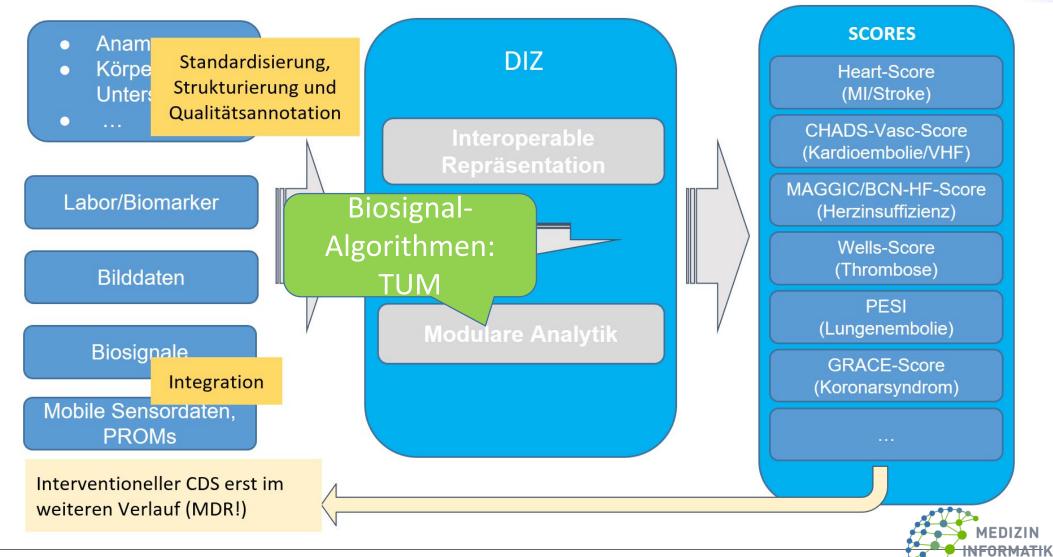
GEFÖRDERT VOM

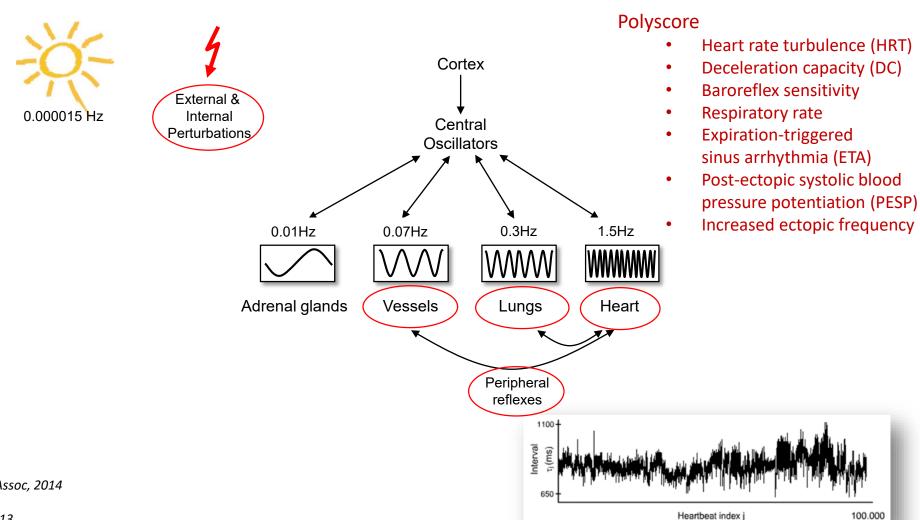


Ausgehend z.B. von COMPASS-Derivat (Stephan Jonas & Team)

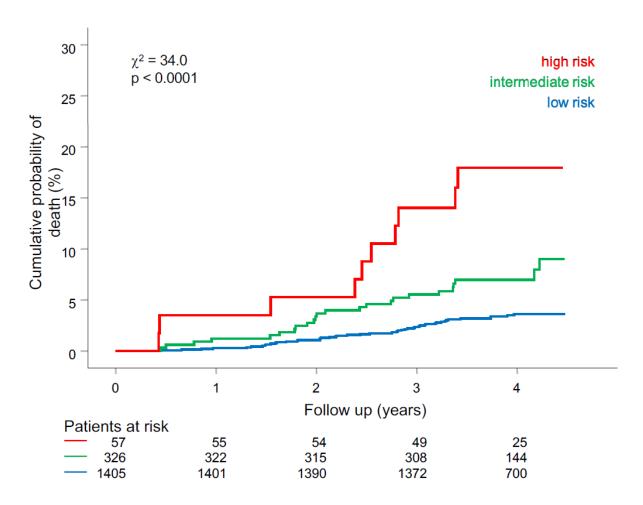
UKB-Studienumfragetool für REDCap


- Für mobile Plattformen (Android, iOS) als auch als Webanwendung verfügbar
 - Identischer Funktionsumfang
- Anmeldung per ausgegebenem QR-Code (Studienteilnehmer-Pseudonym)
- Einfach und intuitiv in der Bedienung, auch für technisch nicht-affine Probanden geeignet
 - In deutscher Sprache / mehrsprachig verfügbar
- Erinnerungsfunktion per Standard-Notifications-Funktionalität oder per SMS
- Für konkreten Anwendungsfall anpassungsfähig, Zusatzfunktionalitäten möglich
- Spricht REDCap Schnittstelle an
- Sensordatenintegration

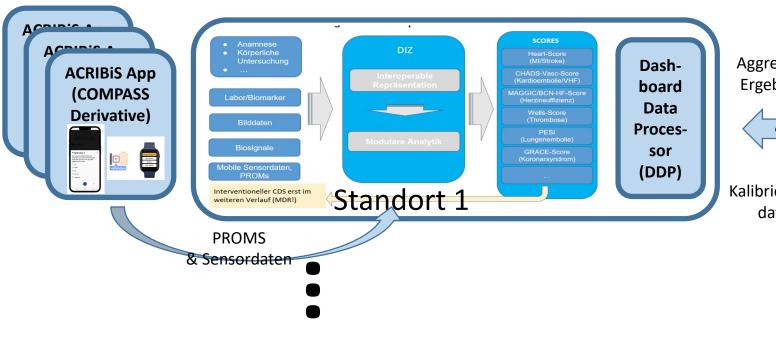




GEFÖRDERT VOM


Autonomous regulation

A complex continuously oscillating system


Schmidt et al., Lancet, 1999 Sinnecker et al., J Am Heart Assoc, 2014 Bauer et al., Lancet, 2006 Barthel et al., Eur Heart J, 2013 Sinnecker et al., J Am Coll Card, 2016

Polyscore – Validation general population

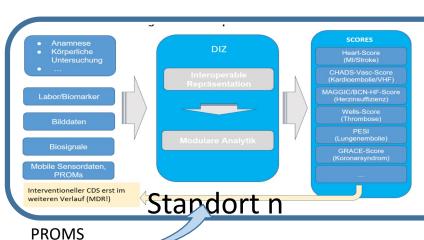
Variable	Univariable model			Multivariable model		
	HR	χ 2	P-value	HR	χ 2	P-value
Age ≥ 75 years	2.47 (1.59–3.82)	16.3	<0.0001	2.07 (1.33–3.23)	10.4	0.001
Diabetes (y/n)	1.58 (1.02-2.44)	4.3	0.039	1.13 (0.71–1.78)	0.3	0.610
Chronic kidney disease (y/n)	2.93 (1.76-4.90)	16.9	< 0.0001	2.14 (1.24-3.69)	7.5	0.006
History of AMI (y/n)	1.69 (0.82-3.51)	2.0	0.157	1.12 (0.53-2.37)	0.1	0.758
History of major stroke (yes/no)	2.49 (1.35-4.59)	8.5	0.004	1.69 (0.90-3.17)	2.7	0.103
Polyscore intermediate risk	2.24 (1.37–3.65)	10.4	0.001	1.80 (1.09-2.96)	5.3	0.022
Polyscore high risk	5.55 (2.81-10.97)	24.3	< 0.0001	4.01 (1.99-8.12)	15.0	< 0.0001

ACRIBiS jenseits der Standortgrenzen

Aggregierte Ergebnisse

Kalibrierungsdaten

NUM Dashboard


(Project specific restricted access area)

- ACRIBIS cohort enrollment tracking
- Data availability monitoring and reporting
- Online tracking of differential predictive performance of scores*
- Distributed recalibration of scores*

*Final project phase

& Sensordaten

Dashboard Data Processor (DDP)

<u>&</u>

Aggregierte

Ergebnisse

Kalibrierungsdaten

ACRIBiS – a team effort

Das ACRIBiS-Management-Board der sechs Kernstandorte: (v. l. n. r.) Prof. Dagmar Krefting (im ZOOM) von der Universitätsmedizin Göttingen (UMG), Dr. Eimo Martens von der Technischen Universität München (TUM), Prof. Peter Heuschmann vom Universitätsklinikum Würzburg (UKW), Prof. Christoph Dieterich vom Universitätsklinikum Heidelberg (UKHD), Prof. Udo Bavendieck von der Medizinischen Hochschule Hannover (MHH) und PD Dr. Sven Zenker vom Universitätsklinikum Bonn (UKB). Bildnachweis: Universitätsklinikum Bonn/Katharina Wislsperger

Wissenschaftliche Gesamtkoordination:

Sven Zenker, Bonn

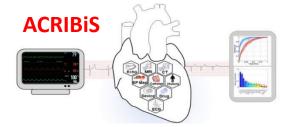
Wissenschaftliche Co-Koordination:

Udo Bavendieck, Hannover Peter Heuschmann, Würzburg

3 weitere Kernstandorte mit zentralen Aufgaben: Heidelberg, Göttingen, München

9 Implementierungspartner: Berlin, Dresden, Essen, Freiburg, Kiel, Mainz, Münster, Ulm sowie das Carl-Thiem-Klinikum in Cottbus

2 assoziierte Partner: Bielefeld, Digitale Modellregion Dreiländereck/Siegen


Förderung: ca. 9,3 MEuro durch das BMBF

Kontakt: acribis@ukbonn.de

Vielen Dank für Ihre Aufmerksamkeit!

Fragen? Anmerkungen?

