Smart Medical Information Technology for Healthcare

Markus Löffler Leipzig

iena

VERSITATS

UNIVERSITÄT LEIPZIG

Friedrich-Schiller-Universität Jena

Sin it is a second seco

Prof. Dr. Wolfgang E. Fleig

Prof. Dr. Uli Hahn

Andreas Henkel

NIVERSITATS

KLINIKUM

lena

UNIVERSITÄT LEIPZIG

Friedrich-Schiller-Universität Jena

Prof. Dr. Gernot Marx

Volker Lowitsch

Background

- Long-standing cooperation in clinical research
 - Infectious diseases, intensive care medicine
- Complementary methodological expertise in
 - clinical trial research
 - epidemiology
 - medical informatics
 - systems medicine and disease modelling
 - natural language processing
- Management experience of large research clusters
- State-of-the-art intersectoral IT services for healthcare

Use cases

Smart Medical Information Technology for Healthcare

HELP

Hospital-wide EMR-based computerized decision support system to improve outcomes of patients with bloodstream infections

ASIC

Algorithmic Surveillance of ICU patients to improve personalized management of care

PheP

Phenotype Pipeline, algorithms for phenotyping and NLP on EMR data

Source: UKJ (A. Schroll, M. Szabó), NVHR

Use Case HELP EMR-based decision support for bloodstream Infections

Smart Medical Information Technology for Healthcare

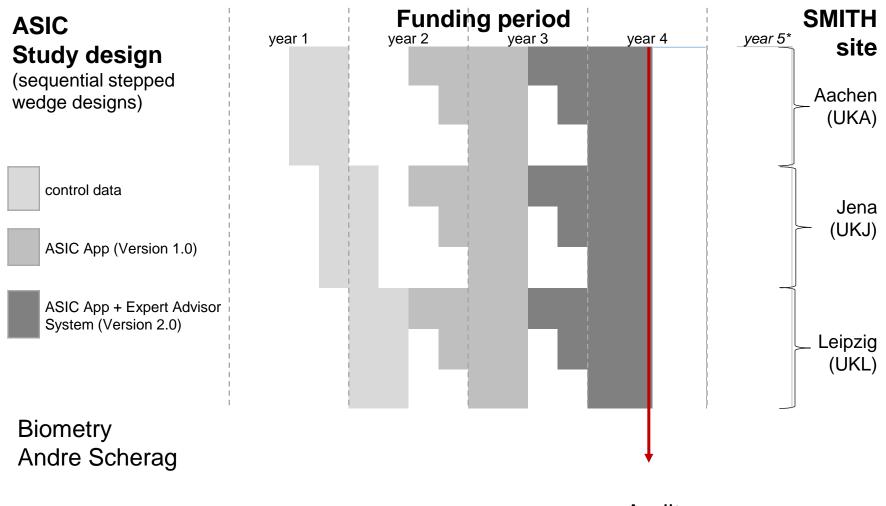
PIs: Pletz, clinician Scherag, biometry Jena

- Setting: Normal wards and ICUs
- Application of EMR-based computerized decision support system to improve outcomes of patients with bloodstream Infections
- Development of digitalized Antibiotic Stewardship based on harmonized structured and unstructured data from diverse information systems
- SMITH App as user interface
- Outcomes: personalized management of bloodstream infections, reduced hospital readmission, reduced mortality

5

Use Case ASIC Algorithmic Surveillance of ICU patients

Smart Medical Information Technology for Healthcare


smith

PI: Gernot Marx, Clinician Andreas Schuppert, Modelling Aachen

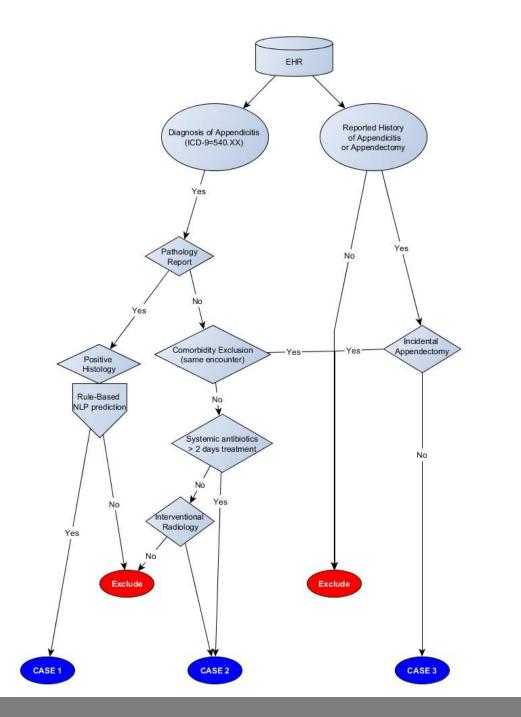
- Setting: Intensive Care Units (ICUs) (Respiration, ARDS, Sepsis)
- Application of "**High-Performance Computing**" for model-based, clinical decision support
- Development of **virtual patient models** for clinical research (partners: Research Centre Jülich, Bayer AG)
- **SMITH App** as user interface
- <u>Outcomes</u>: personalized management of ARDS, reduced organ dysfunctions, reduced mortality

Generating Evidence

Audit

Outcome: hard clinical endpoints

Use Case PheP Phenotype pipeline and NLP


smith

Smart Medical Information Technology for Healthcare

PIs: M Löffler, classifiers & models U Hahn, NLP

- Algorithms for phenotyping by using structured and unstructured data from electronic medical records (EMR) → classification, annotation
- Development of
 - a rules engine and factory and a meta data repository
 - a natural language processing engine and factory and text corpus
- create a technology to automatically mine EMR and generate phenotype classifications and annotations (the uses cases are two examples)

Smart Medical Information Technology for Healthcare

eg Appendicitis classifier -Emerge -

smith

ormation althcare?

Web Table 2. Characteristics of Heart Failure Status Definitions				
HF Status	Presence of ICD9 AND positive mention of HF	Heart Failure Date	Ejection Fraction	
Definite	Yes	365 day window	No EF EF <50% (HF Type = 1) EF ≥50% (HF Type = 2)	
Probable	Yes (or ≥5 unique dates of either)	365- 1825 day window	No EF EF <50% (HF Type = 1) EF ≥50% (HF Type = 2)	
Possible	Either or none if EF <50	Unable to assign date	any	
Control	None	N/A	No EF EF ≥50	

Heart Failure Date Assignment Rules: Taking the cross product of all the unique

smith

NLP-Ejection fraction

•	Calculated EF ##%	•	Estimated Left Ventricular Ejection Fraction ##%
•	Calculated LVEF ##%	•	Estimated Left Ventricular Ejection Fraction ##%-
•	Calculated LV ejection fraction ##%		##%
•	Calculated Left Ventricular ejection fraction ##%	•	Estimated Left Ventricular Ejection Fraction range
•	Calculated Ejection Fraction ##%		##%-##%
•	Calculated Ejection Fraction ##%. Visual estimate	•	EF ##%
	##%-##%	•	Ejection Fraction ##%
•	Estimated EF ##%	•	LVEF ##%
•	Estimated EF = ##%	•	LVEF ~ ## - ##%Left Ventricular Ejection Fraction
•	Estimated EF ##%-##%		##%
•	Estimated Ejection Fraction ##%	•	Visual Estimate of LVEF ##%
•	Estimated Ejection Fraction ##%-##%	•	Visual estimate of Left Ventricular Ejection Fraction ##%
		•	Visual Estimate of EF ##%
		•	Visual Estimate of Ejection Fraction ##%

Natural Language Processing

Objective: Building a nucleus for text analysis of German medical records

- Automating content-focused analyses
- Build up of accessible well annotated **clinical corpora** (gold standard for system evaluation, training data for machine learning of classification models)
- Development of novel, **semantics-focused software** (primarily dealing with clinical named entities, their relations, and temporal dependencies among events)
- Formation of a dedicated NLP-pipeline useable by the DICes
- Collaboration with leading national players in biomedical Natural Language Processing (NLP), from industry (Averbis, Freiburg and ID, Berlin) and academia (JULIE Lab, Prof Hahn, FSU Jena)

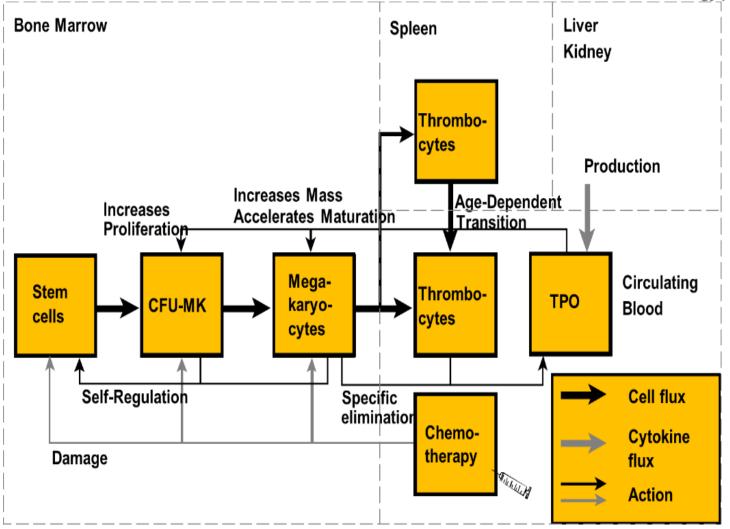
Outcome of a first corpus project

(Uli Hahn, M Loeffler)

- **Collection** of 2,360 German-language discharge summaries from roughly 3,000 patient records (EHR) taken from the three sites involved (J: 960, L: 850, AC:550)
- Annotation with the BRAT tool carried out by 8 annotators across the three sites (J: 5, L: 2, AC: 1)
- Annotation of all medication information contained in the discharge summaries on drug name, dosage, mode, frequency, duration, reasons for administration
- Evaluation of the quality of annotations by measuring the inter-annotator agreement (IAA) for the 5 annotators from Jena, using a centroid F-score: drug name, dosage and frequency (.95), mode (.75), duration (.70), reasons (<.50)
- Evaluation of a-prototype medication recognition system using F-score: dosage and frequency (.82), drug name (.50), mode (.21), reasons (–)

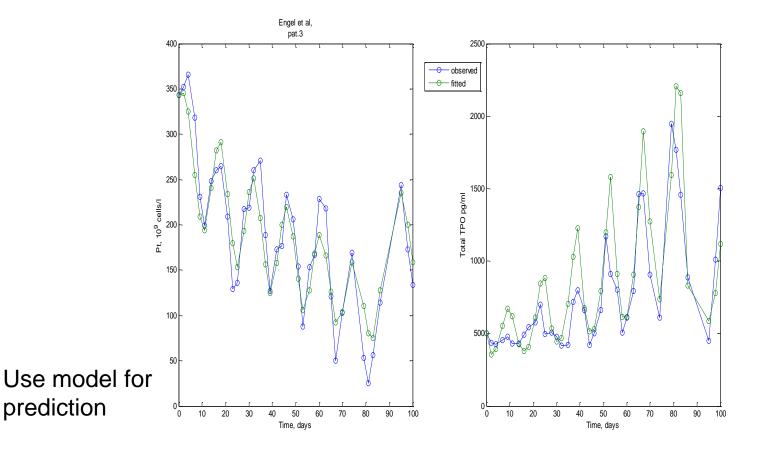
PheP can be used to

Smart Medical Information Technology for Healthcare

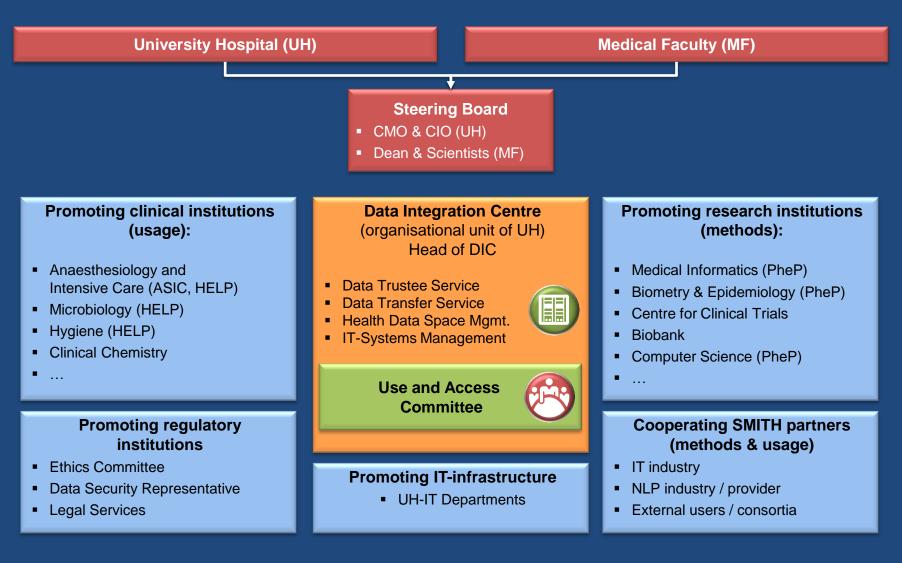

- analyse real world patient care
- search for particular phenotypes (eg CAP, genetic)
- investigate and improve EMR data quality
- Integrate systems medicine disease models into the physicians desk top (pespective emerging) eg chemotherapy dosing and timing

based on hematotoxicity models (e:Med projects)

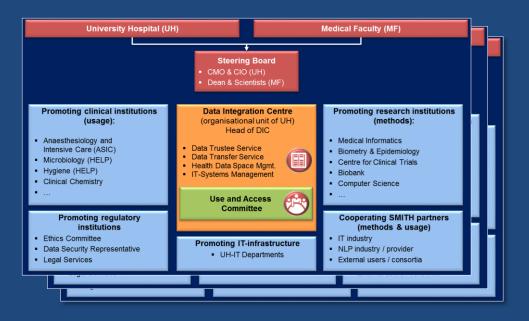
eg biomarker based treatment decisions


Model of thrombopoiesis

smith


Hematotoxicity BEACOPP 14

smith


Data Integration Centres - Generic Concept -

Data Integration Centres

Smart Medical Information Technology for Healthcare

Heads of DICs

UH Aachen

Dr. Silke Haferkamp

UH Jena

Dr. Danny Ammon

UH Leipzig

Dr. Thomas Wendt

Technical Standards for Data Integration

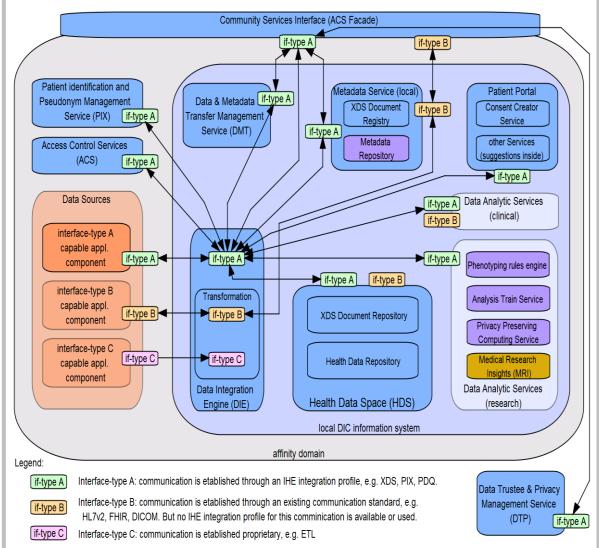
- PIX / PDQ
- ATNA
- BPPC / APPC
- XDS
- XCA
- XUA

- CDA
- FHIR
- CQL

- SNOMED-CT
- LOINC
- ICQ/OPS
- IHE-D Value Sets

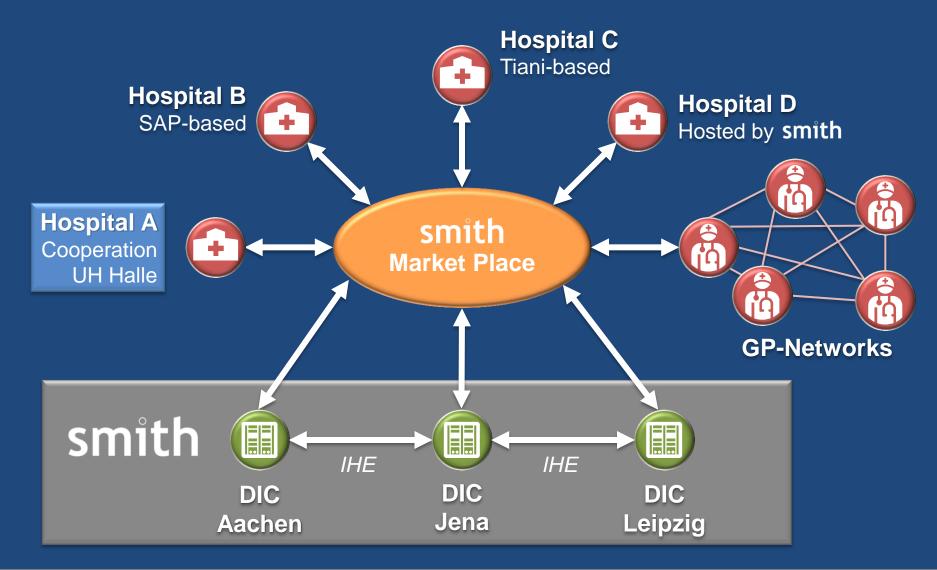
SMITH DIC – Architectural Aspects - Communication -

smith


Smart Medical Information Technology for Healthcare

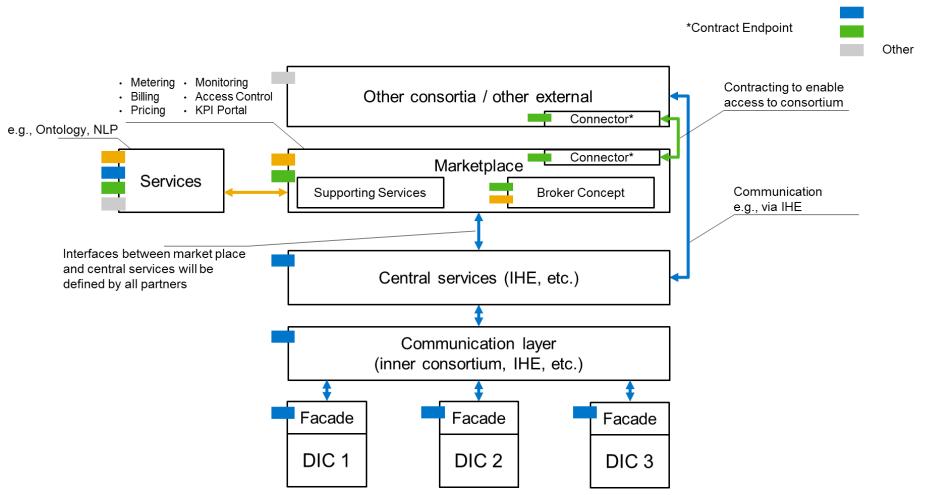
Health Data Repository

- Central persistency for structured clinical data
- FHIR interface


Medical Research Insights

- Analyze patient data to verify or develop research hypotheses
- Identify candidates for studies

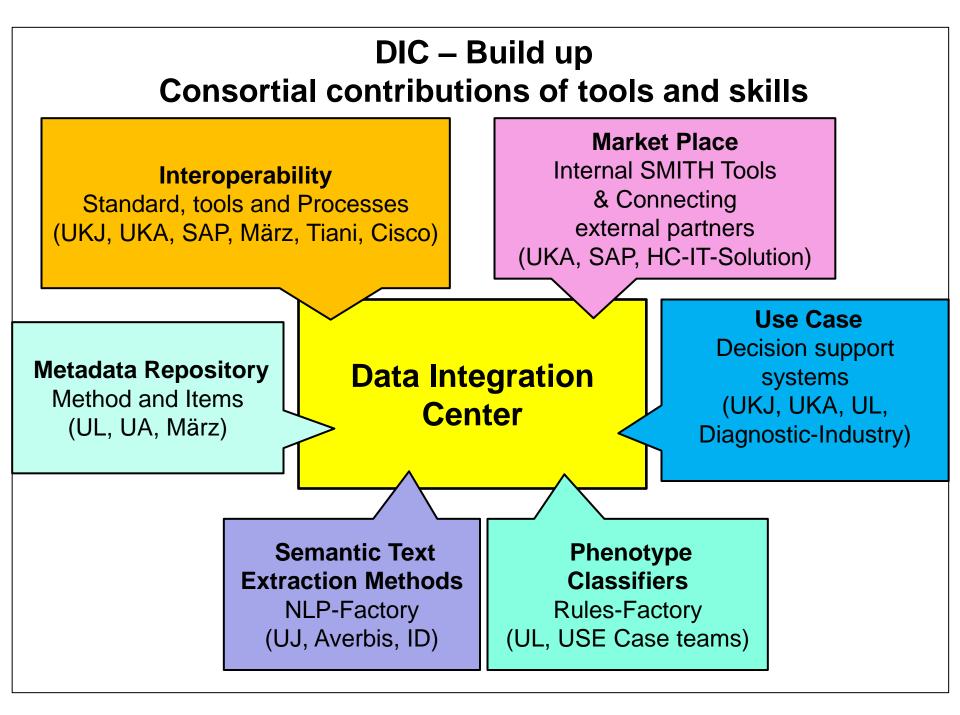
Roll-out Concept



Smart Medical Information

Technology for Healthcare

SMITH Market Place – Structure & Cooperation with industrial partners



Lowitsch, CIO, Aachen

Partnerships & Cooperations

Overarching timelines

Interoperablility:

1 - 18 Initial set up of interoperability in DIC

19 - 30 Interoperablility implemented in DIC

Clinical use cases:

- 19 First patient in use case control cohorts
- 30 First patient in use case interventional cohorts
- 42 Recruiting closed and analysis performed

Roll out:

- 19+ Starting add DIC build up
- 42 DICs active, 2 hospitals, 3 GP networks

Curricula for students:

- 3 new BSc/MSc programs
 - o "Data Science" (Aachen),
 - o "Medical Data Sciences" (Jena),
 - "Biomedical and Health Informatics" (Leipzig)
- 1 international postgraduate MSC (Aachen, International Academy)

Education

Smart Medical Information Technology for Healthcare

PI: Alfred Winter

26

MSC Curricula

smith

	D1	D2	D3	D4	D5	D6	D7	D8	
Ac	•	•	•	0	×	•	•	×	
J	٠	٠	٠	×	×	٠	٠	٠	
L	•	0	•	•	•	•	0	0	

- Addressed by existing program
- Partly addressed by existing program
- × Needed

D1	Basics of medicine and principles of medical decision-making in diagnostics and therapy.			
D2	Basics of molecular biology, bioinformatics and computational biology.			
D3	Statistical foundations of medical research and evidence-based medicine.			
D4	Architecture of complex information systems for medical research and care.			
D5	Management of complex information systems for medical research and care.			
D6	Representing and modeling medical information and knowledge (incl. ontologies).			
D7	Managing and processing medical signal/image data.			
D8	Accessing, managing and mining biomedical big data.			

Education

Smart Medical Information Technology for Healthcare

3 Additional Professorships

- Leipzig (W3 Medical Data Science; 2017)
- Jena (W2 2018)
- Aachen (W3 2018)

Beitritt zum SMITH-Konsortium

Wir sind grundsätzlich offen für Beitritte von Standorten, die unsere Vorgehensweise zu DIC, Interoperabilität und Use Cases nachvollziehen wollen.

Wir bitten solche Standorte um eine schriftliche Bekundung

Wir werden dann

- Kontakt aufnehmen
- zu einer Informationsveranstaltung am 3.Nov einladen
- dann die Vorgehensweise zu einem gemeinsamen Antrag abstimmen

Danke für die Aufmerksamkeit