Labordaten

Gefahren bei der Auswertung

Thomas Streichert

Warum Labordaten auswerten?

- Diagnosen stellen und überprüfen
- Diagnostische Wertigkeit ermitteln
 - z.B. Korrelation mit Aufnahmediagnosen/ Entlassdiagnosen
- Abschätzung von biologischer Varianz
- Indirekte Ermittlung von Referenzwerten
- Abschätzung des Krankheitsverlaufs/ Prognostik
- Ermittlung von Prävalenzen /
 - z.B. Abschätzung des Screeningaufwands bei klinischen Studien

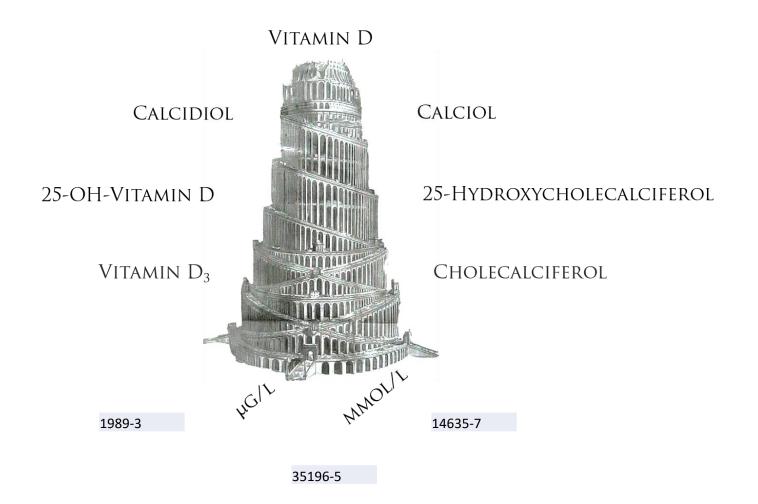
"Neue" Anwendungen? 26.01.2018 07:00 Uhr

Forschung: Künstliche Intelligenz sagt den **Todeszeitpunkt voraus**

Mit Hilfe von hunderttausenden Patientendaten haben Forscher neuronale Netze trainiert, die vierundzwanzig Stunden nachdem ein Patient in ein Krankenhaus eingewiesen wird, seinen wahrscheinlichsten Todeszeitpunkt voraussagen können.

von Fabian A. Scherschel

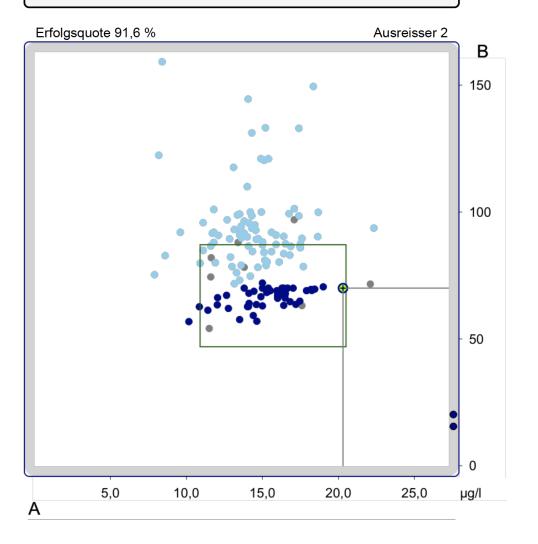
ePA/ PDMS


d.velop

Meine Gesundheitsakte Digital (Bayern)

Data Warehousing

Improving Palliative Care with Deep Learning


³H-basierte Radioreceptor Assay (RRA)-HPLC

LC-MS/MS

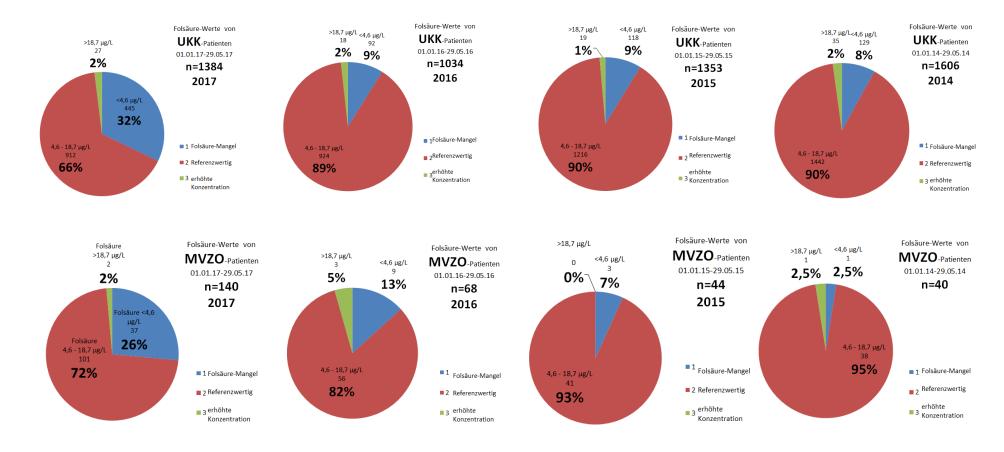
> 6 immunologische Messverfahren

Analyt **Vitamin D, total**Methode Alle Methoden

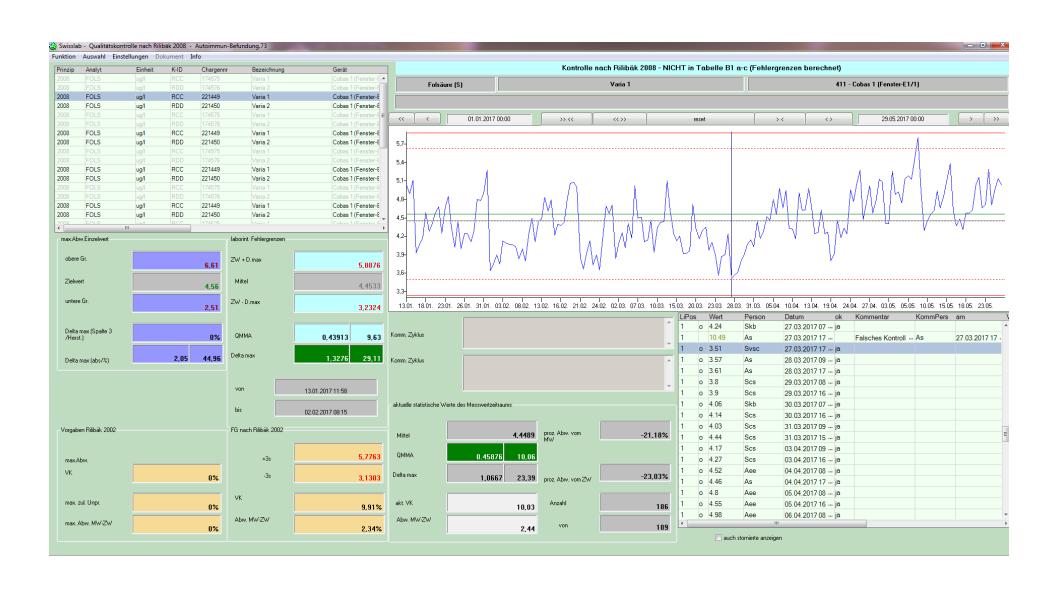
M	Kit	N	Min	16.P	50.P	84.P	Max	5 10 15 20
ΑII	е	144	7.90	12.2	14.7	17.2	68.0	+
1	53	3	13.4		13.8		17.1	
4	13	3	13.0		13.2		13.5	
4	30	63	8.60	11.8	14.3	16.8	22.3	
Ro	che2	50	10.2	13.5	15.7	17.8	68.0	— 0
Ro	che3	12	7.90	8.20	14.6	17.2	18.4	
4	40	3	15.9		16.4		17.5	
4	77	3	13.3		14.2		14.7	
M	Kit	e B [N	Min	16.P	50.P	84.P	Max	50 100
ΑII	е	144	15.5	66.1	82.5	98.2	159	-
1	53	3	78.2		88.0		97.0	
4	13	3	71.7		73.1		78.5	
4	30	63	78.5	82.8	90.2	98.5	110	-
	che2	50	15.5	62.1	67.0	70.0	72.0	-10
	che3	12	75.3	118	127	149	159	_
Ro		3	86.0		87.2 76.1		90.4 78.2	
	40 77	3	74.7					

Andere Kits (Anzahl): 1-41(1), 1-111(1), 2-270(1), 3-21(2), 4-23(1), 4-99(1),

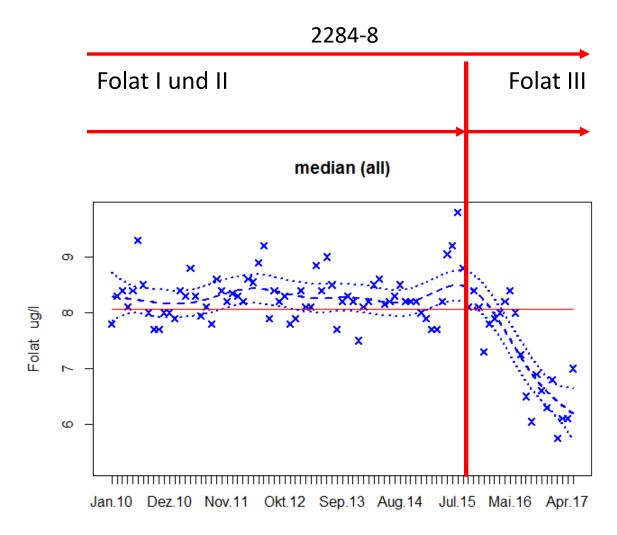
Voraussetzungen, um Labordaten auszuwerten?

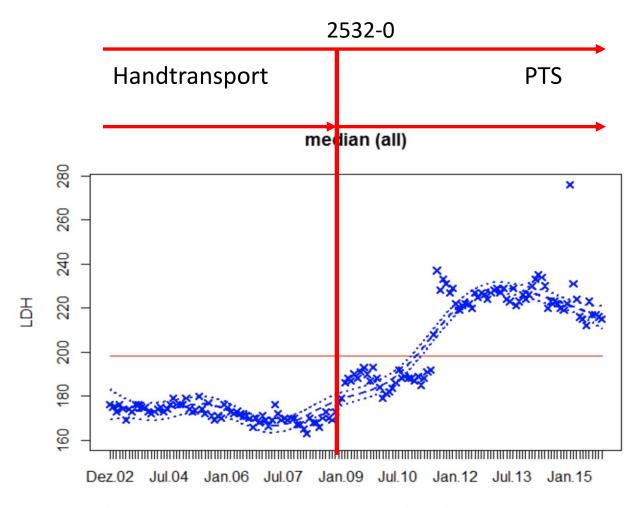

Konstante

Messbedingungen

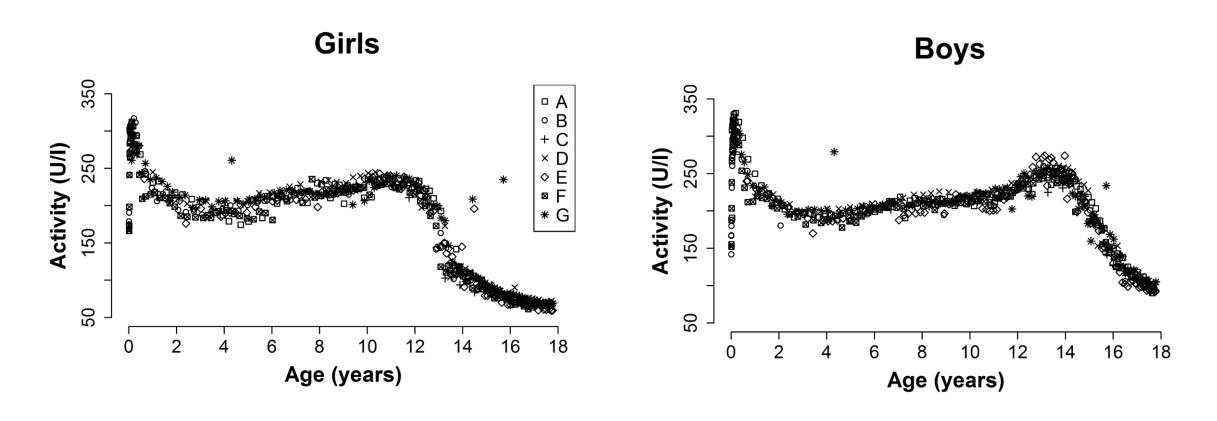

Messbedingungen

Messgröße (Bezeichnung)


FOLS-Mangel <4,6 μg/L	2017	2016	2015	2014
UKK	32 %	9 %	9 %	8 %
MVZO	26 %	13 %	7 %	2,5 %


QK: niedrige Folsäure-Kontrolle Jan.2017 – Jun.2017 ok!

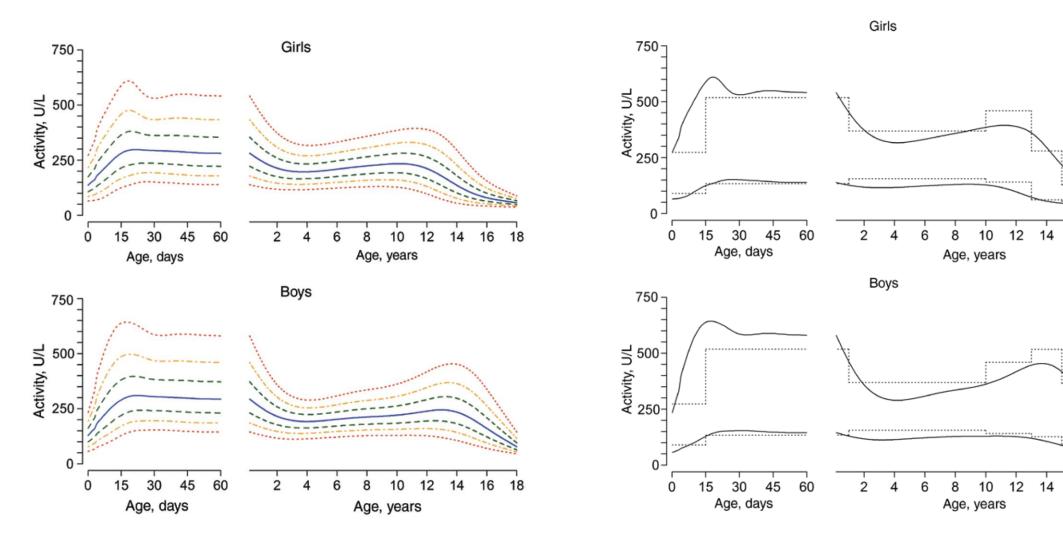
Beispiel – Folsäure Driftanalyse



Beispiel – Präanalytik Driftanalyse

fitted smooth-function, median=function(time), for all (blue-dashed) with Cl (blue-dotted) compared with non time-dependent median (red).

AP – Poolen von Daten?



AP – Poolen von Daten?

Datensätze

Age group		Total	Boys		Girls	
	Samples	Individuals	Samples	Individuals	Samples	Individuals
0–28 days	11,513	7823	6723	4449	4790	3374
29 days to 1 year	30,780	10,924	17,422	6148	13,358	4776
1 year	18,076	7393	9668	3959	8408	3434
2 years	15,817	6605	8857	3566	6960	3039
3 years	15,456	6899	8572	3811	6884	3088
4 years	15,246	7389	8452	4111	6794	3278
5 years	15,396	7844	8502	4324	6894	3520
6 years	15,579	7646	8796	4159	6783	3487
7 years	15,617	8022	7999	4237	7618	3785
8 years	16,251	8624	8518	4475	7733	4149
9 years	16,679	8942	8999	4690	7680	4252
10 years	17,468	9526	9386	5055	8082	4471
11 years	18,212	9892	9678	5314	8534	4578
12 years	19,677	10,833	10,744	5777	8933	5056
13 years	22,361	12,279	11,486	6355	10,875	5924
14 years	23,580	12,304	11,950	6223	11,630	6081
15 years	23,191	11,884	11,397	5705	11,794	6179
16 years	25,196	12,336	13,093	5731	12,103	6605
17 years	25,237	12,312	12,699	5577	12,538	6735
Total	36,1405	12,4440	19,2972	64,670	16,8433	59,770

AP – Pädiatrische RI

Age- and sex-dependent percentile charts for alkaline phosphatase activity, showing the 50th percentile (solid lines, blue), 25th and 75th percentiles (dashed lines, green), 10th and 90th percentiles (dashdotted lines, orange), and 2.5th and 97.5th percentiles (dotted lines, red);

Comparison of 2.5th and 97.5th percentiles for alkaline phosphatase activity (solid lines) to reference intervals from the CALIPER study (dotted lines)

Minimale Information zu Laboranalytik (MILA)

- Eindeutige Analytbezeichnung / LOINC
- Mess-System (Material)
- Resultat
- Einheit
- Referenzbereich
- Zeitstempel der Anforderung und Analyse
- Patientenbezogene Daten:
 - Alter, Geschlecht (ggfs. Name und DOB)
- Ort / Herkunft der Daten

LOT

• • • •

QK (intern/ extern)

UDI - Unique Device Identification

(01)4015630001576(10)1245678(17)131231 = GTIN + Batch / Lot Number + Expiration Date

Device Identifier – Mandatory for ALL materials

AI*	Description	Maximum Data Length
(01)	Global Trade Item Number (GTIN)	14 (numeric)

Product Identifier – Mandatory if applicable (Device traceability settings)

Al	Description	Maximum Data Length
(10)	Batch / Lot Number	14 (alphanumeric)
(17)	Expiration Date	6 (YYMMDD)
(21)	Serial Number	18 (alphanumeric)

UDI - Datenbanken

Danke!

Standarisierung vs. Normalisierung? QQ-Plot

Serum eines 65a Patienten wurde aliquotiert und in 4 verschiedene Laboratorien zur Analyse versendet (unterschiedliche Methoden)

	Conventional result (RI) unit
Lab 1 (Enzymatisch, 14682-9)	140 (64-104) μmol/l
Lab 2 (Enzymatisch, 2160-0)	1.58 (0.72-1.18) mg/dl
Lab 3 (Jaffe, kompensiert, 2160-0)	1.60 (0.74-1.20) mg/dl
Lab 4 (Jaffe, nicht- kompensiert, 2160-0)	1.88 (1.02-1.48) mg/dl

UDID-Datenelemente

- 1. Menge pro Packung
- 2. alternative oder zusätzliche Kennnummer(n), ggf.
- 3. Angabe, wie das Produkt kontrolliert wird (z.B. über Chargennummer)
- 4. Produktnummer der Gebrauchseinheit, ggf.
- 5. Name und Anschrift des Herstellers
- · 6. Name und Anschrift des bevollmächtigten Vertreters, ggf.
- 7. GMDN-Code oder international anerkannter Nomenklatur-Code
- · 8. Handelsname/Markenname, ggf.
- 9. Modell-, Referenz- oder Katalognummer des Produkts, ggf.
- 10. klinische Größe, ggf.
- 11. zusätzliche Produktbeschreibung, fakultativ
- 12. Lagerungs- und/oder Handhabungshinweise, ggf.
- 13. zusätzliche Handelsnamen des Produkts, ggf.
- 14. als Produkt zum Einmalgebrauch ausgewiesen (ja/nein)
- 15. beschränkte Anzahl der Wiederverwendungen, ggf.
- 16. Produkt steril verpackt (ja/nein)
- 17. Sterilisation vor Verwendung erforderlich (ja/nein)
- 18. als Latex enthaltendes Produkt ausgewiesen (ja/nein)
- 19. als DEHP enthaltendes Produkt ausgewiesen (ja/nein)
- 20. URL-Adresse für zusätzliche Informationen, z.B. elektron. Gebrauchsanweisung, fak.
- 21. wichtige Warnhinweise oder Kontraindikationen